Trees
(in computer science)
Tree in Computer Science

- A tree is a widely used data structure that simulates a hierarchical tree structure with a set of linked nodes

- **Fundamental** data storage structures used in programming
- Nonlinear structure
- Represents a *hierarchy*
- Items in a tree do not form a simple sequence
- Quite efficient for retrieving items (as arrays)
- Quite efficient for inserting/deleting items (as lists)
JavaFX 2.0 Layout Classes

Ordinamento dello Stato Italiano
Tree basics

- Consists of nodes connected by edges
- Nodes often represent entities (complex objects)
- Edges between the nodes represent the way the nodes are related
- The only way to get from node to node is to follow a path along the edges

Tree Basics

- **Node**
 - Root (radice)
 - Leaf (foglia)
 - Interior node/branch (nodo interno)
- **Links**
 - Edge (arco)
 - Path (cammino)
Tree Basics

- **Relationship**
 - Parent (padre)
 - Child nodes (nodi figli)
 - Sibling (fratelli)
 - Descendant (discendente, successore)
 - Ancestor (antenato, predecessore)

Terminology

- **Visiting**
 - A node is visited when program control arrives at the node, usually for processing

- **Traversing**
 - To traverse a tree means to visit all the nodes in some specified order
Terminology

- Levels
 - The level of a particular node refers to how many generations the node is from the root
 - Root is assumed to be level 0

- Height
 - The height of a node is the length of the path to its farthest descendant (i.e. farthest leaf node)
 - The height of a tree is the height of the root
 - A tree with only root node has height 0
Test!

- Number of nodes
- Height
- Root Node
- Leaves
- Levels
- Interior nodes
- Ancestors of H
- Descendants of B
- Siblings of E

Tree representation

- Store the list of children in each node
For each node store its first-born and its brother.

Store each sub-tree as a separate object in a list.
An oversimplified tree

```java
public class Tree<T> {
    public Node<T> root;

    public Tree() {
        root = new Node<T>();
    }

    public Tree(T r) {
        root = new Node<T>(r);
    }
}
```

An oversimplified tree

```java
public class Node<T> {
    T data;
    Node<T> parent;
    List<Node<T>> children;

    public Node() {
        data = null;
        children = new ArrayList<Node<T>>();
    }

    public Node(T d) {
        this();
        data = d;
    }

    [...]
An oversimplified tree

```java
public void addChild(Node<T> n) {
 n.parent = this;
 children.add(n);
}

public void removeChild(Node<T> n) {
 children.remove(n);
}
```

Terminology

- **Visiting**
  - A node is visited when program control arrives at the node, usually for processing

- **Traversing**
  - To traverse a tree means to visit all the nodes in some specified order
public class Tree<T> {
    [...] 

    public void Visit() {
        root.Visit();
    }
}

public class Node<T> {
    [...] 
    void Visit() {
        // Do something on the node
        for(Node<T> n : children) {
            n.Visit();
        }
    }
}
void Visit() {
    if(children.size()>0)
        System.out.print("(");
    System.out.print(data);
    for(Node<T> n : children) {
        System.out.print(" ");
        n.Visit();
    }
    if(children.size()>0)
        System.out.print(")");
}

public class Node<T> {
    void Visit() {
        for(Node<T> n : children) {
            n.Visit();
        }
        // Do something on the node
    }
}
A binary tree is a tree where each node has at most two children.

The two children are ordered ("left", "right")

- Right sub-tree vs. Left sub-tree
Balanced trees

- (Height-)balanced trees
  - The left and right sub-trees’ heights differ by at most one
  - The two sub-trees are (height-)balanced
- Perfectly balanced
  - \(2^h - 1\) nodes
- Several alternative definitions

![Balanced tree diagram]

Complete trees

- Complete binary tree
  - Every level, except possibly the last, is completely filled, and all nodes are as far left as possible

![Complete tree diagram]
Tree representation

A complete tree can be efficiently stored in an array.

Degenerate trees
Traversing in binary trees

- **Pre-order**: process root node, then its left/right sub-trees
- **In-order**: process left sub-tree, then root node, then right
- **Post-order**: process left/right sub-trees, then root node

```
pre-order: 17 41 29 6 9 81 40
in-order: 29 41 6 17 81 9 40
post-order: 29 6 41 81 40 9 17
```
Traversals trick

- To quickly generate a traversal:
  - Trace a path around the tree
  - As you pass a node on the proper side, process it
    - pre-order: left side
    - in-order: bottom
    - post-order: right side

- pre-order: 17 41 29 6 9 81 40
- in-order: 29 41 6 17 81 9 40
- post-order: 29 6 41 81 40 9 17

Exercise

- Give pre-, in-, and post-order traversals for the following tree:

  pre:

  in:

  post:
Polish prefix notation

- Akas: “Polish notation”, “prefix notation”
- Created in 1924 by the Polish logician Jan Łukasiewicz
- Operators are on the left of their operands
- If the arity of the operators is fixed
  ⇒ no need for parentheses or other brackets

- E.g.:
  - $3 \times (2 + 7) \Rightarrow *3 + 7$
  - $(x + y) / (2 - z) \Rightarrow / + y - 2 z$

Reverse Polish notation

- (Re-)Invented by Bauer and Dijkstra in early 1960s to exploit stack for evaluating expressions
- Operator follows all of its operands
- If the arity of the operators is fixed
  ⇒ no need for parentheses or other brackets

- E.g.:
  - $3 \times (2 + 7) \Rightarrow 327+$
  - $(x + y) / (2 - z) \Rightarrow x + 2 z - /$
Traversals and notations

- **In-order:**

- **Pre-order:**

- **Post-order:**

```
(3 + 5) * 2 + (6 - 3)
```

```
+ * + 3 5 2 - 6 3
```

```
3 5 + 2 * 6 3 - +
```

---

**BST**

Binary Search Tree
Binary search trees

- A binary tree where each non-empty node R has the following properties:
  - Elements of R’s left sub-tree contain data “less than” R’s data
  - Elements of R’s right sub-tree contain data “greater than” R’s
  - R’s left and right sub-trees are also binary search trees

Binary search trees

- BSTs store their elements in sorted order, which is helpful for searching/sorting tasks
Exercise

- Is it a legal binary search tree?

```
-5
/ \
-1 -7
```

Exercise

- Is it a legal binary search tree?

```
-5
/ \
-1 -7
```
Exercise

Is it a legal binary search tree?

```
 7.2
 / \
 1.9 9.6
 / \
 8.1 21.3
```

Exercise

Is it a legal binary search tree?

```
 m
 / \
 g q
 / \
 b x
 / \
 e
```
Exercise

- Is it a legal binary search tree?

![Binary Search Tree](image)

Searching in a BST

- Describe an algorithm for searching a binary search tree (try searching for 31, then 6)

![Binary Search Tree](image)
Searching in a BST

- Searching in a BST is $O(h)$
  - If the tree is balanced, then $h \approx \log_2 N$
  - $\Rightarrow$ Searching for an element is $O(\ln N)$

Showdown

<table>
<thead>
<tr>
<th></th>
<th>Array</th>
<th>List</th>
<th>Hash</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(element)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(\ln n)$</td>
</tr>
<tr>
<td>remove(object)</td>
<td>$O(n) + O(n)$</td>
<td>$O(n) + O(1)$</td>
<td>$O(1)$</td>
<td>$O(\ln n)$</td>
</tr>
<tr>
<td>get(index)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>set(index, element)</td>
<td>$O(1)$</td>
<td>$O(n) + O(1)$</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>add(index, element)</td>
<td>$O(1) + O(n)$</td>
<td>$O(n) + O(1)$</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>remove(index)</td>
<td>$O(n)$</td>
<td>$O(n) + O(1)$</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>contains(object)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\ln n)$</td>
</tr>
<tr>
<td>indexOf(object)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
Licenza d’uso

Queste diapositive sono distribuite con licenza Creative Commons “Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)”

Sei libero:
- di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest’opera
- di modificare quest’opera

Alle seguenti condizioni:
- **Attribuzione** — Devi attribuire la paternità dell’opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l’opera.
- **Non commerciale** — Non puoi usare quest’opera per fini commerciali.
- **Condividi allo stesso modo** — Se alteri o trasformi quest’opera, o se la usi per crearne un’altra, puoi distribuire l’opera risultante solo con una licenza identica o equivalente a questa.

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/