Recursion
Summary

1. Definition and divide-and-conquer strategies
2. Simple recursive algorithms
 1. Fibonacci numbers
 2. Dicothomic search
 3. X-Expansion
 4. Proposed exercises
3. Recursive vs Iterative strategies
4. More complex examples of recursive algorithms
 1. Knight’s Tour
 2. Proposed exercises
Definition and divide-and-conquer strategies

Recursion
Definition

- A method (or a procedure or a function) is defined as recursive when:
 - Inside its definition, we have a call to the same method (procedure, function)
 - Or, inside its definition, there is a call to another method that, directly or indirectly, calls the method itself

- An algorithm is said to be recursive when it is based on recursive methods (procedures, functions)
Example: Factorial

\[
\begin{align*}
0! & \overset{\text{def}}{=} 1 \\
\forall N \geq 1: & \quad N! \overset{\text{def}}{=} N \times (N-1)!
\end{align*}
\]

```java
public long recursiveFactorial(long N) {
    long result = 1;
    if (N == 0) {
        return 1;
    } else {
        result = recursiveFactorial(N - 1);
        result = N * result;
        return result;
    }
}
```
Motivation

- Many problems lend themselves, naturally, to a recursive description:
 - We define a method to solve sub-problems similar to the initial one, but smaller
 - We define a method to combine the partial solutions into the overall solution of the original problem

Divide et impera

Gaius Julius Caesar
Divide et Impera – Divide and Conquer

- **Solution** = **Solve** (**Problem**) ;

- **Solve** (**Problem**) {
 - List<SubProblem> subProblems = **Divide** (**Problem**) ;
 - For (each subP[i] in subProblems) {
 - SubSolution[i] = **Solve** (subP[i]) ;
 }
 - Solution = **Combine** (SubSolution[1..N]) ;
 - return Solution ;
}

A.A. 2015/2016
Divide et Impera – Divide and Conquer

- Solution = Solve (Problem);

- **Solve** (Problem) {
 - List<SubProblem> subProblems = Divide (Problem);
 - For (each subP[i] in subProblems) {
 - SubSolution[i] = Solve (subP[i]);
 }
 - Solution = Combine (SubSolution[1..N])
 - return Solution ;
}
How to stop recursion?

- **Recursion must not** be infinite
 - Any algorithm must always terminate!

- After a sufficient nesting level, sub-problems become so small (and so easy) to be solved:
 - Trivially (ex: sets of just one element)
 - Or, with methods different from recursion
Warnings

- Always remember the “termination condition”
- Ensure that all sub-problems are strictly “smaller” than the initial problem
Divide et Impera – Divide and Conquer

- **Solve** (Problem) {
 - if (problem is trivial)
 - Solution = \textbf{Solve_trivial} (Problem);
 - else {
 - List<SubProblem> subProblems = \textbf{Divide} (Problem);
 - For (each subP[i] in subProblems) {
 - SubSolution[i] = \textbf{Solve} (subP[i]);
 }
 - Solution = \textbf{Combine} (SubSolution[1..N]);
 }
 - return Solution;
}
What about complexity?

- $a =$ number of sub-problems for a problem
- $b =$ how smaller sub-problems are than the original one
- $n =$ size of the original problem
- $T(n) =$ complexity of Solve
 - …our unknown complexity function
- $\Theta(1) =$ complexity of Solve_{trivial}
 - …otherwise it wouldn’t be trivial
- $D(n) =$ complexity of Divide
- $C(n) =$ complexity of Combine
Divide et Impera – Divide and Conquer

- **Solve** (Problem) {
 - if (problem is trivial)
 - Solution = **Solve_trivial** (Problem) ;
 - else {
 - List<SubProblem> subProblems = **Divide** (Problem) ;
 - For (each subP[i] in subProblems) {
 - SubSolution[i] = **Solve** (subP[i]) ;
 }
 - Solution = **Combine** (SubSolution[1..a]) ;
 }
 - return Solution ;
}
Complexity computation

- $T(n) =$
 - $\Theta(1)$ for $n \leq c$
 - $D(n) + aT(n/b) + C(n)$ for $n > c$

- Recurrence Equation not easy to solve in the general case

- Special case:
 - If $D(n)+C(n)=\Theta(n)$
 - We obtain $T(n) = \Theta(n \log n)$.
Simple recursive algorithms

Recursion
Fibonacci Numbers

- **Problem:**
 - Compute the N-th Fibonacci Number

- **Definition:**
 - $FIB_{N+1} = FIB_N + FIB_{N-1}$ for $N > 0$
 - $FIB_1 = 1$
 - $FIB_0 = 0$
Recursive solution

```java
public long recursiveFibonacci(long N) {
    if (N==0)
        return 0 ;
    if (N==1)
        return 1 ;

    long left = recursiveFibonacci(N-1) ;
    long right = recursiveFibonacci(N-2) ;

    return left + right ;
}
```

Fib(0) = 0
Fib(1) = 1
Fib(2) = 1
Fib(3) = 2
Fib(4) = 3
Fib(5) = 5
Analysis

FIB(5)

FIB(3) → FIB(5) → FIB(4)
Analysis

- FIB(5)
 - FIB(3)
 - FIB(1)
 - FIB(0)
 - FIB(2)
 - FIB(1)
 - FIB(4)
Analysis

FIB(5)

FIB(3) FIB(4)

FIB(1) FIB(2) FIB(3) FIB(2)

FIB(0) FIB(1) FIB(1) FIB(2) FIB(1)

FIB(0) FIB(1) FIB(0)
Analysis

Complexity?
Example: dichotomic search

- **Problem**
 - Determine whether an element \(x \) is **present** inside an ordered vector \(v[N] \)

- **Approach**
 - Divide the vector in two halves
 - Compare the middle element with \(x \)
 - Reapply the problem over one of the two halves (left or right, depending on the comparison result)
 - The other half may be ignored, since the vector is ordered
Example

\[V \begin{array}{ccccccc}
1 & 3 & 4 & 6 & 8 & 9 & 11 & 12 \\
\end{array} \]

\[X \begin{array}{c}
4 \\
\end{array} \]
Example

\[v \begin{array}{cccccccc}
1 & 3 & 4 & 6 & 8 & 9 & 11 & 12 \\
\end{array} \quad x \begin{array}{c}
4 \\
\end{array} \]

\[\begin{aligned}
&y \geq x \\
&y < x
\end{aligned} \]
Example

\[\begin{align*}
\text{v} & \quad \begin{array}{cccccccc}
1 & 3 & 4 & 6 & 8 & 9 & 11 & 12 \\
\end{array} \\
\begin{array}{cccc}
1 & 3 & 4 & 6 \\
\end{array} & \quad \begin{array}{cccc}
8 & 9 & 11 & 12 \\
\end{array} \\
\begin{array}{cc}
1 & 3 \\
\end{array} & \quad \begin{array}{cc}
4 & 6 \\
\end{array} \\
\begin{array}{cc}
4 & 6 \\
\end{array}
\end{align*} \]

\[\begin{align*}
\text{x} & \quad \begin{array}{c}
4 \\
\end{array} \\
\begin{array}{c}
8 \\
\end{array} & \quad \begin{array}{c}
9 \\
\end{array} & \quad \begin{array}{c}
11 \\
\end{array} & \quad \begin{array}{c}
12 \\
\end{array}
\end{align*} \]

\[y \geq x \quad \text{and} \quad y < x \]
public int find(int[] v, int a, int b, int x) {
 if(b-a == 0) { // trivial case
 if(v[a]==x) return a ; // found
 else return -1 ; // not found
 }

 int c = (a+b) / 2 ; // splitting point
 if(v[c] >= x)
 return find(v, a, c, x) ;
 else return find(v, c+1, b, x) ;
}
public int find(int[] v, int a, int b, int x)
{
 if(b-a == 0) { // trivial case
 if(v[a]==x) return a ; // found
 else return -1 ; // not found
 }
 int c = (a+b) / 2 ; // splitting point
 if(v[c] >= x)
 return find(v, a, c, x) ;
 else return find(v, c+1, b, x) ;
}

Beware of integer-arithmetic approximations!
Quick reference

Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Best</th>
<th>Average</th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O (1)</td>
<td>O (log n)</td>
<td>O (log n)</td>
</tr>
</tbody>
</table>

```plaintext
search (A, t)
1. low = 0
2. high = n - 1
3. while (low ≤ high) do
4. ix = (low + high) / 2
5. if (t = A[ix]) then
6.  return true
7. else if (t < A[ix]) then
8.  high = ix - 1
9. else low = ix + 1
10. return false
end
```

Example

First pass
- low: 1
- high: 17
- ix: 8

<table>
<thead>
<tr>
<th>low</th>
<th>ix</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second pass
- low: 1
- high: 9
- ix: 5

<table>
<thead>
<tr>
<th>low</th>
<th>ix</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third pass
- low: 1
- high: 9
- ix: 5

<table>
<thead>
<tr>
<th>low</th>
<th>ix</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

Explored elements
- 1
- 4
- 8
- 9
- 11
- 15
- 17
Exercise: Value X

- When working with Boolean functions, we often use the symbol X, meaning that a given variable may have indifferently the value 0 or 1.

- Example: in the OR function, the result is 1 when the inputs are 01, 10 or 11. More compactly, if the inputs are X1 or 1X.
We want to devise an algorithm that, given a binary string that includes characters 0, 1 and X, will compute all the possible combinations implied by the given string.

Example: given the string 01X0X, algorithm must compute the following combinations:
- 01000
- 01001
- 01100
- 01101
- 01101
Solution

- We may devise a recursive algorithm that explores the complete ‘tree’ of possible compatible combinations:
 - Transforming each X into a 0, and then into a 1
 - For each transformation, we recursively seek other X in the string
- The number of final combinations (leaves of the tree) is equal to 2^N, if N is the number of X.
- The tree height is $N+1$.

Combinations tree

- 01X0X
 - 0100X
 - 01000
 - 01001
 - 0110X
 - 01100
 - 01101
Recursion myths

- Recursive algorithms are $O(n \log n)$
- Recursive algorithms are better than non-recursive ones
- Recursive algorithms can be coded quickly
Why recursion?

- Divide et impera
- Systematic exploration/enumeration
- Handling recursive data structures
Licenza d’uso

- Queste diapositive sono distribuite con licenza Creative Commons “Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)”

- Sei libero:
 - di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera
 - di modificare quest'opera

- Alle seguenti condizioni:
 - **Attribuzione** — Devi attribuire la paternità dell'opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
 - **Non commerciale** — Non puoi usare quest'opera per fini commerciali.
 - **Condividi allo stesso modo** — Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.

- http://creativecommons.org/licenses/by-nc-sa/3.0/