Graphs: Cycles

Tecniche di Programmazione – A.A. 2012/2013
Summary

- Definitions
- Algorithms
Definitions

Graphs: Cycles
Cycle

- A **cycle** of a graph, sometimes also called a circuit, is a subset of the edge set of a graph that forms a path such that the first node of the path corresponds to the last.
Hamiltonian cycle

- A cycle that uses each graph vertex of a graph exactly once is called a Hamiltonian cycle.
A Hamiltonian path, also called a Hamilton path, is a path between two vertices of a graph that visits each vertex exactly once.

N.B. does not need to return to the starting point.
Eulerian Path and Cycle

- An **Eulerian path**, also called an Euler chain, Euler trail, Euler walk, or "Eulerian" version of any of these variants, is a walk on the graph edges of a graph which **uses each graph edge** in the original graph **exactly once**.

- An **Eulerian cycle**, also called an Eulerian circuit, Euler circuit, Eulerian tour, or Euler tour, is a trail which starts and ends at the **same** graph vertex.
Theorem

- A connected graph has an Eulerian **cycle** if and only if it **all vertices have even degree**.
- A connected graph has an Eulerian **path** if and only if it **has at most two graph vertices of odd degree**.

…easy to check!

Königsberg Bridges
Weighted vs. Unweighted

- Classical versions defined on Unweighted graphs

Unweighted:
- Does such a cycle exist?
- If yes, find at least one
 - Optionally, find all of them

Weighted
- Does such a cycle exist?
 - Often, the graph is complete 😊
- If yes, find at least one
- If yes, find **the best one** (with minimum weight)
Algorithms

Graphs: Cycles
Eulerian cycles: Hierholzer's algorithm (1)

- Choose **any** starting vertex \(v \), and **follow a trail** of edges from that vertex until returning to \(v \).

- It is **not** possible to get stuck at any vertex other than \(v \), because the even degree of all vertices ensures that, when the trail enters another vertex \(w \) there must be an unused edge leaving \(w \).

- The tour formed in this way is a **closed** tour, but may **not** cover all the vertices and edges of the initial graph.
Eulerian cycles: Hierholzer's algorithm (2)

- As long as there exists a vertex v that belongs to the current tour but that has adjacent edges not part of the tour, start another trail from v, following unused edges until returning to v, and join the tour formed in this way to the previous tour.
Finding Eulerian circuits
Hierholzer’s Algorithm

Given: an Eulerian graph G

Find an Eulerian circuit of G.

1. Identify a circuit in G and call it R_1. Mark the edges of R_1. Let $i = 1$.

2. If R_i contains all edges of G, then stop (since R_i is an Eulerian circuit).

3. If R_i does not contain all edges of G, then let v_i be a node on R_i that is incident with an unmarked edge, e_i.

4. Build a circuit, Q_i, starting at node v_i and using edge e_i. Mark the edges of Q_i.

5. Create a new circuit, R_{i+1}, by patching the circuit Q_i into R_i at v_i.

6. Increment i by 1, and go to step (2).
Finding Eulerian circuits
Hierholzer’s Algorithm

Example

\[R_1: e, g, h, j, e \]
\[Q_1: h, d, c, h \]

\[R_2: e, g, h, d, c, h, j, e \]
\[Q_2: d, b, a, c, e, d \]
Finding Eulerian circuits
Hierholzer’s Algorithm

Example (continued)

R_4: e, g, h, f, e, i, h, d, b, a, c, e, d, c, h, j, e

R_3: e, g, h, d, b, a, c, e, d, c, h, j, e

Q_3: h, f, e, i, h
Eulerian Circuits in JGraphT

Overview Package Class Tree Deprecated Index Help

org.jgrapht.alg

Class EulerianCircuit

defined by

java.lang.Object

- org.jgrapht.alg.EulerianCircuit

public abstract class EulerianCircuit

extends java.lang.Object

This algorithm will check whether a graph is Eulerian (hence it contains an Eulerian circuit). Also, if a graph is Eulerian, the caller can obtain a list of vertices making up the Eulerian circuit. An Eulerian circuit is a circuit which traverses each edge exactly once.

Since:
Dec 21, 2008

Author:
Andrew Newell

Constructor Summary

- EulerianCircuit()

Method Summary

Hamiltonian Cycles

- There are theorems to identify whether a graph is Hamiltonian (i.e., whether it contains at least one Hamiltonian Cycle)
- Finding such a cycle has no known efficient solution, in the general case
- Example: the Traveling Salesman Problem (TSP)
The Traveling Salesman Problem (TSP)

Given a collection of cities connected by roads
Find the shortest route that visits each city exactly once.

About TSP

- Most notorious NP-complete problem.
- Typically, it is solved with a backtracking algorithm:
 - The best tour found to date is saved.
 - The search backtracks unless the partial solution is cheaper than the cost of the best tour.
What about JGraphT?

- `org.jgrapht.alg.HamiltonianCycle`
 - `static <V,E> java.util.List<V> getApproximateOptimalForCompleteGraph(SimpleWeightedGraph<V,E> g)`

But...

- `g` must be a **complete** graph
- `g` must satisfy the “triangle inequality”: \(d(x,y) + d(y,z) < d(x,z) \)

Definition (The Metric Traveling Salesman Problem)

The **metric traveling salesman problem** assumes that the distance in the graph is a metric. A **metric** is a function \(d : V \times V \rightarrow \mathbb{R}_+ \) such that

- \(d(x, y) + d(y, z) \geq d(x, z) \) for all \(x, y, z \in V \).
- \(d(x, y) = 0 \) if and only if \(x = y \).
ASSUMPTION: G is a metric graph.

1. Compute a minimum weight spanning tree T for G.

2. Perform a depth-first traversal of T starting from any node, and order the nodes of G as they were discovered in this traversal.

\Rightarrow a tour that is at most twice the optimal tour in G.
Resources

- http://mathworld.wolfram.com/
Licenza d’uso

- Queste diapositive sono distribuite con licenza Creative Commons “Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)”

- Sei libero:
 - di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera
 - di modificare quest'opera

- Alle seguenti condizioni:
 - Attribuzione — Devi attribuire la paternità dell'opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
 - Non commerciale — Non puoi usare quest'opera per fini commerciali.
 - Condividi allo stesso modo — Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.

- http://creativecommons.org/licenses/by-nc-sa/3.0/