Graphs: Finding shortest paths

Tecniche di Programmazione – A.A. 2013/2014
Summary

- Definitions
- Floyd-Warshall algorithm
- Bellman-Ford-Moore algorithm
- Dijkstra algorithm
Definitions

Graphs: Finding shortest paths
Definition: weight of a path

- Consider a directed, weighted graph $G = (V, E)$, with weight function $w: E \rightarrow \mathbb{R}$.
 - This is the general case: undirected or un-weighted are automatically included.
- The weight $w(p)$ of a path p is the sum of the weights of the edges composing the path.

$$w(p) = \sum_{(u, v) \in p} w(u, v)$$
Definition: shortest path

- The shortest path between vertex u and vertex v is defined as the minimum-weight path between u and v, if the path exists.
- The weight of the shortest path is represented as $\delta(u,v)$
- If v is not reachable from u, then $\delta(u,v)=\infty$
Finding shortest paths

- **Single-source shortest path (SS-SP)**
 - Given u and v, find the shortest path between u and v
 - Given u, find the shortest path between u and any other vertex

- **All-pairs shortest path (AP-SP)**
 - Given a graph, find the shortest path between any pair of vertices
What to find?

- Depending on the problem, you might want:
 - The **value** of the shortest path weight
 - Just a real number
 - The **actual path** having such minimum weight
 - For simple graphs, a sequence of vertices. For multigraphs, a sequence of edges
What is the shortest path between s and v?
Representing shortest paths

- To store all shortest paths from a single source u, we may add
 - For each vertex v, the weight of the shortest path $\delta(u,v)$
 - For each vertex v, the “preceding” vertex $\pi(v)$ that allows to reach v in the shortest path
 - For multigraphs, we need the preceding edge

- Example:
 - Source vertex: u
 - For any vertex v:
 - double v.weight;
 - Vertex v.preceding;
Example

\[\pi \]

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>NULL</td>
</tr>
<tr>
<td>u</td>
<td>s</td>
</tr>
<tr>
<td>x</td>
<td>u</td>
</tr>
<tr>
<td>v</td>
<td>x</td>
</tr>
<tr>
<td>y</td>
<td>v</td>
</tr>
</tbody>
</table>

\[\delta \]

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>3</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>v</td>
<td>8</td>
</tr>
<tr>
<td>y</td>
<td>10</td>
</tr>
</tbody>
</table>
Lemma

- The “previous” vertex in an intermediate node of a minimum path does not depend on the final destination

Example:
- Let p_1 = shortest path between u and v_1
- Let p_2 = shortest path between u and v_2
- Consider a vertex $w \in p_1 \cap p_2$
- The value of $\pi(w)$ may be chosen in a single way and still guarantee that both p_1 and p_2 are shortest
Shortest path graph

- Consider a source node u
- Compute all shortest paths from u
- Consider the relation $E_{\pi} = \{ (v\text{.preceeding}, v) \}$
- $E_{\pi} \subseteq E$
- $V_{\pi} = \{ v \in V : v \text{ reachable from } u \}$
- $G_{\pi} = G(V_{\pi}, E_{\pi})$ is a subgraph of $G(V,E)$
- G_{π}: the predecessor-subgraph
Shortest path tree

- G_π is a tree (due to the Lemma) rooted in u
- In G_π, the (unique) paths starting from u are always shortest paths
- G_π is not unique, but all possible G_π are equivalent (same weight for every shortest path)
Example

\[\delta = \begin{array}{c|c}
\text{Vertex} & \text{Weight} \\
\hline
s & 0 \\
u & 3 \\
x & 4 \\
v & 8 \\
y & 10 \\
\end{array} \]

\[\pi = \begin{array}{c|c}
\text{Vertex} & \text{Previous} \\
\hline
s & \text{NULL} \\
u & s \\
x & u \\
v & x \\
y & v \\
\end{array} \]
Special case

- If G is an un-weighted graph, then the shortest paths may be computed just with a breadth-first visit
Negative-weight cycles

- Minimum paths cannot be defined if there are negative-weight cycles in the graph.
- In this case, the minimum path does not exist, because you may always decrease the path weight by going once more through the loop.
- Conventionally, in these cases we say that the path weight is $-\infty$.
Example

![Diagram](image-url)
Example

Minimum-weight paths from source vertex s

Diagram:

- Source vertex s
- Vertices: a, b, c, d, e, f, g
- Edges with weights:
 - s to c: 5
 - c to d: 6
 - d to f: 3
 - f to e: 3
 - e to s: -∞
 - s to a: 3
 - a to b: -4
 - b to g: 4
 - g to -∞
 - c to e: 2
 - c to d: -3
 - d to g: 8
 - g to -∞
Lemma

- Consider an ordered weighted graph $G=(V,E)$, with weight function $w: E \rightarrow \mathbb{R}$.
- Let $p=<v_1, v_2, \ldots, v_k>$ a shortest path from vertex v_1 to vertex v_k.
- For all i,j such that $1 \leq i \leq j \leq k$, let $p_{ij}=<v_i, v_{i+1}, \ldots, v_j>$ be the sub-path of p, from vertex v_i to vertex v_j.
- Therefore, p_{ij} is a shortest path from v_i to v_j.
Corollary

- Let p be a shortest path from s to v
- Consider the vertex u, such that (u,v) is the last edge in the shortest path
- We may decompose p (from s to v) into:
 - A sub-path from s to u
 - The final edge (u,v)
- Therefore
 \[\delta(s,v) = \delta(s,u) + w(u,v) \]
Lemma

- If we chose arbitrarily the vertex u', then for all edges $(u',v) \in E$ we may say that
 - $\delta(s,v) \leq \delta(s,u') + w(u',v)$
Relaxation

- Most shortest-path algorithms are based on the relaxation technique

- It consists of
 - Vector $d[u]$ represents $\delta(s,u)$
 - Keeping track of an updated estimate $d[u]$ of the shortest path towards each node u
 - Relaxing (i.e., updating) $d[v]$ (and therefore the predecessor $\pi[v]$) whenever we discover that node v is more conveniently reached by traversing edge (u,v)
Initial state

- **Initialize-Single-Source**($G(V,E), s$)
 1. **for** all vertices $v \in V$
 2. **do**
 1. $d[v] \leftarrow \infty$
 2. $\pi[v] \leftarrow \text{NIL}$
 3. $d[s] \leftarrow 0$
Relaxation

- We consider an edge \((u,v)\) with weight \(w\)

- Relax\((u, v, w)\)
 1. \textbf{if} \(d[v] > d[u] + w(u,v)\)
 2. \textbf{then}
 1. \(d[v] \leftarrow d[u] + w(u,v)\)
 2. \(\pi[v] \leftarrow u\)
Example 1

Before:
Shortest known path to v weights 9, does not contain (u,v)

After:
Shortest path to v weights 7, the path includes (u,v)
Example 2

Before:
Shortest path to v weights 6, does not contain (u,v)

After:
No relaxation possible, shortest path unchanged
Lemma

- Consider an ordered weighted graph $G=(V,E)$, with weight function $w: E \rightarrow \mathbb{R}$.
- Let (u,v) be an edge in G.
- After relaxation of (u,v) we may write that:
 - $d[v] \leq d[u] + w(u,v)$
Lemma

- Consider an ordered weighted graph $G=(V,E)$, with weight function $w: E \rightarrow \mathbb{R}$ and source vertex $s \in V$. Assume that G has no negative-weight cycles reachable from s.

Therefore

- After calling Initialize-Single-Source(G,s), the predecessor subgraph G_π is a rooted tree, with s as the root.
- Any relaxation we may apply to the graph does not invalidate this property.
Lemma

- Given the previous definitions.
- Apply any possible sequence of relaxation operations
- Therefore, for each vertex v
 - $d[v] \geq \delta(s,v)$
- Additionally, if $d[v] = \delta(s,v)$, then the value of $d[v]$ will not change anymore due to relaxation operations.
Shortest path algorithms

- Various algorithms
- Differ according to one-source or all-sources requirement
- Adopt repeated relaxation operations
- Vary in the order of relaxation operations they perform
- May be applicable (or not) to graph with negative edges (but no negative cycles)
Floyd-Warshall algorithm

Graphs: Finding shortest paths
Floyd-Warshall algorithm

- Computes the all-source shortest path (AP-SP)
- dist[i][j] is an n-by-n matrix that contains the length of a shortest path from vi to vj.
- if dist[u][v] is ∞, there is no path from u to v
- pred[s][j] is used to reconstruct an actual shortest path: stores the predecessor vertex for reaching vj starting from source vs
Floyd-Warshall: initialization

\textbf{allPairsShortestPath} \ (G)

1. \textbf{foreach} \(u \in V \) \textbf{do}
2. \textbf{foreach} \(v \in V \) \textbf{do}
3. \(\text{dist}[u][v] = \infty \)
4. \(\text{pred}[u][v] = -1 \)
5. \(\text{dist}[u][u] = 0 \)
6. \textbf{foreach} \(\text{neighbor} \ v \ \text{of} \ u \ \textbf{do} \\
7. \(\text{dist}[u][v] = \text{weight of edge} \ (u,v) \\
8. \(\text{pred}[u][v] = u \)
Example, after initialization
Floyd-Warshall: relaxation

9. \textbf{foreach} \(t \in V \) \textbf{do}
10. \textbf{foreach} \(u \in V \) \textbf{do}
11. \textbf{foreach} \(v \in V \) \textbf{do}
12. \quad \text{newLen} = \text{dist}[u][t] + \text{dist}[t][v]
13. \quad \textbf{if} (\text{newLen} < \text{dist}[u][v]) \textbf{then}
14. \quad \text{dist}[u][v] = \text{newLen}
15. \quad \text{pred}[u][v] = \text{pred}[t][v]
Example, after step $t=0$
Example, after step $t=1$
Example, after step t=2
Example, after step $t=3$
Complexity

- The Floyd-Warshall is basically executing 3 nested loops, each iterating over all vertices in the graph.
- Complexity: $O(V^3)$
Implementation

```java
org.jgrapht.alg

Class FloydWarshallShortestPaths\langle V, E\rangle

java.lang.Object
\_org.jgrapht.alg.FloydWarshallShortestPaths\langle V, E\rangle

public class FloydWarshallShortestPaths\langle V, E\rangle
extends java.lang.Object

The Floyd-Warshall algorithm finds all shortest paths (all \(n^2\) of them) in \(O(n^3)\) time. This also works out the graph diameter during the process.

Author:
Tom Larkworthy, Soren Davidsen

Constructor Summary

floydWarshallShortestPaths\langle Graph\langle V, E\rangle \ rangle\ graph

Method Summary

double getDiameter()

\langle Graph\langle V, E\rangle \ rangle getGraph()

\langle GraphPath\langle V, E\rangle \ rangle getShortestPath\langle V, a, V, b\rangle

Get the shortest path between two vertices.

java.util.List\langle GraphPath\langle V, E\rangle \ rangle\ getShortestPaths\langle V, v\rangle

Get shortest paths from a vertex to all other vertices in the graph.

int getShortestPathsCount()

double shortestDistance\langle V, a, V, b\rangle

Get the length of a shortest path.
Bellman-Ford-Moore Algorithm

Graphs: Finding shortest paths
Bellman-Ford-Moore Algorithm

- Solution to the single-source shortest path (SS-SP) problem in graph theory
- Based on relaxation (for every vertex, relax all possible edges)
- Does not work in presence of negative cycles
  - but it is able to detect the problem
- $O(V \cdot E)$
Bellman-Ford-Moore Algorithm

\[
\text{dist}[s] \leftarrow 0 \quad \text{(distance to source vertex is zero)}
\]

\text{for all } v \in V - \{s\} \quad \text{do } \text{dist}[v] \leftarrow \infty \quad \text{(set all other distances to infinity)}

\text{for } i \leftarrow 0 \text{ to } |V| \quad \text{for all } (u, v) \in E

\text{do if } \text{dist}[v] > \text{dist}[u] + w(u, v) \quad \text{(if new shortest path found)}

\quad \text{then } d[v] \leftarrow d[u] + w(u, v) \quad \text{(set new value of shortest path)}

\quad \text{(if desired, add traceback code)}

\text{for all } (u, v) \in E \quad \text{(sanity check)}

\text{do if } \text{dist}[v] > \text{dist}[u] + w(u, v)

\quad \text{then } \text{PANIC!}
Dijkstra’s Algorithm

Graphs: Finding shortest paths
Dijkstra’s algorithm

- Solution to the single-source shortest path (SS-SP) problem in graph theory
- Works on both directed and undirected graphs
- All edges must have nonnegative weights
  - the algorithm would miserably fail
- Greedy
  - … but guarantees the optimum!
Dijkstra’s algorithm

dist[s] ← 0  (distance to source vertex is zero)

for all v ∈ V-{s}
   do dist[v] ← ∞  (set all other distances to infinity)

S ← ∅  (S, the set of visited vertices is initially empty)
Q ← V  (Q, the queue initially contains all vertices)

while Q ≠ ∅  (while the queue is not empty)
   do u ← mindistance(Q, dist)  (select e ∈ Q with the min. distance)
      S ← S∪{u}  (add u to list of visited vertices)
      for all v ∈ neighbors[u]
         do if dist[v] > dist[u] + w(u, v)  (if new shortest path found)
            then d[v] ← d[u] + w(u, v)  (set new value of shortest path)
               (if desired, add traceback code)
Dijkstra Animated Example

Initialize:

\[ Q: \begin{array}{cccccc}
    & A & B & C & D & E \\
A & 0 & \infty & \infty & \infty & \infty \\
\end{array} \]

\[ S: \{ \} \]
Dijkstra Animated Example

![Graph with nodes and edges labeled with weights]

- **Q:** A, B, C, D, E
- **A:** 0
- **B:** ∞
- **C:** ∞
- **D:** ∞
- **E:** ∞
Dijkstra Animated Example

![Graph with nodes A, B, C, D, E and edges showing distances and a set S containing A.]

Q: A | B | C | D | E
---|---|---|---|---
0  | ∞ | ∞ | ∞ | ∞
10 | 3 | ∞ | ∞ | ∞

S: \{A\}
Dijkstra Animated Example

\[ Q: \begin{array}{cccccc}
\text{A} & \text{B} & \text{C} & \text{D} & \text{E} \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & & & \\
\end{array} \]

\[ S: \{ A, C \} \]
Dijkstra Animated Example

Q:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

S: \{ A, C \}
Dijkstra Animated Example

Q: A B C D E
   0 ∞ ∞ ∞ ∞
   10 3 ∞ ∞ ∞
   7 3 11 5

S: {A, C, E}

Graph:
- A (0)
- B (7)
- C (3)
- D (11)
- E (5)

Connections:
- A to B: 10
- A to C: 3
- B to D: 2
- B to C: 1
- C to D: 8
- C to E: 2
- D to E: 7
Dijkstra Animated Example

Q:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

S: { A, C, E }
Dijkstra Animated Example
Dijkstra Animated Example
Dijkstra Animated Example

Q: A B C D E
0 10 7 7
∞ ∞ 3 11 5
∞ ∞ ∞ ∞ ∞

S: { A, C, E, B, D }
Why it works

- A formal proof would take longer than this presentation, but we can understand how the argument works intuitively
  - Think of Djikstra’s algorithm as a water-filling algorithm
  - Remember that all edge’s weights are positive
Dijkstra efficiency

- The simplest implementation is:
  \[ O(E + V^2) \]

- But it can be implemented more efficiently:
  \[ O(E + V \cdot \log V) \]

Floyd–Warshall: \( O(V^3) \)
Bellman-Ford-Moore: \( O(V \cdot E) \)
Applications

- Dijkstra’s algorithm calculates the shortest path to every vertex from vertex \( s \) (SS-SP)
- It is about as computationally expensive to calculate the shortest path from vertex \( u \) to every vertex using Dijkstra’s as it is to calculate the shortest path to some particular vertex \( t \)
- Therefore, anytime we want to know the optimal path to some other vertex \( t \) from a determined origin \( s \), we can use Dijkstra’s algorithm (and stop as soon \( t \) exit from \( Q \)
Applications

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems
Dijkstra's Shortest Path Algorithm

- Find shortest path from s to t
Dijkstra's Shortest Path Algorithm

\[ S = \{ \} \]
\[ Q = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ \} \]
\[ Q = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s \} \]
\[ Q = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s \} \]
\[ Q = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

$S = \{ s, 2 \}$
$Q = \{ 3, 4, 5, 6, 7, t \}$
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2 \} \]
\[ Q = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2 \} \]
\[ Q = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 6 \} \]
\[ Q = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 6 \} \]
\[ Q = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 6, 7 \} \]
\[ Q = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 6, 7 \} \]
\[ Q = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ s, 2, 3, 6, 7 \}
Q = \{ 4, 5, t \}
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 3, 6, 7 \} \]
\[ Q = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 3, 5, 6, 7 \} \]
\[ Q = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 3, 5, 6, 7 \} \]
\[ Q = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 3, 4, 5, 6, 7 \} \]
\[ Q = \{ t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 3, 4, 5, 6, 7 \} \]
\[ Q = \{ t \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[ Q = \{ \} \]
Dijkstra's Shortest Path Algorithm

\[ S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[ Q = \{ \} \]
## Shortest Paths wrap-up

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Problem</th>
<th>Efficiency</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floyd-Warshall</td>
<td>AP</td>
<td>$O(V^3)$</td>
<td>No negative cycles</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>SS</td>
<td>$O(V \cdot E)$</td>
<td>No negative cycles</td>
</tr>
<tr>
<td>Repeated Bellman-Ford</td>
<td>AP</td>
<td>$O(V^2 \cdot E)$</td>
<td>No negative cycles</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>SS</td>
<td>$O(E + V \cdot \log V)$</td>
<td>No negative edges</td>
</tr>
<tr>
<td>Repeated Dijkstra</td>
<td>AP</td>
<td>$O(V \cdot E + V^2 \cdot \log V)$</td>
<td>No negative edges</td>
</tr>
<tr>
<td>Breadth-First visit</td>
<td>SS</td>
<td>$O(V + E)$</td>
<td>Unweighted graph</td>
</tr>
</tbody>
</table>
public class FloydWarshallShortestPaths<V,E>
public class BellmanFordShortestPath<V,E>
public class DijkstraShortestPath<V,E>

// APSP
List<GraphPath<V,E>> getShortestPaths(V v)
GraphPath<V,E> getShortestPath(V a, V b)

// SSSP
GraphPath<V,E> getPath()
Resources

Licenza d’uso

- Queste diapositive sono distribuite con licenza Creative Commons “Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)”

- Sei libero:
  - di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera
  - di modificare quest'opera

- Alle seguenti condizioni:
  - Attribuzione — Devi attribuire la paternità dell'opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
  - Non commerciale — Non puoi usare quest'opera per fini commerciali.
  - Condividi allo stesso modo — Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.

- [Link alla licenza](http://creativecommons.org/licenses/by-nc-sa/3.0/)