Graphs: Finding shortest paths

Summary

- Definitions
- Floyd-Warshall algorithm
- Bellman-Ford-Moore algorithm
- Dijkstra algorithm
Definitions

Graphs: Finding shortest paths

Definition: weight of a path

- Consider a directed, weighted graph $G=(V,E)$, with weight function $w: E \rightarrow \mathbb{R}$
 - This is the general case: undirected or un-weighted are automatically included
 - The weight $w(p)$ of a path p is the sum of the weights of the edges composing the path

$$w(p) = \sum_{(u,v) \in p} w(u, v)$$
Definition: shortest path

- The shortest path between vertex u and vertex v is defined as the minimum-weight path between u and v, if the path exists.
- The weight of the shortest path is represented as $\delta(u,v)$.
- If v is not reachable from u, then $\delta(u,v)=\infty$.

Finding shortest paths

- **Single-source shortest path**
 - Given u and v, find the shortest path between u and v.
 - Given u, find the shortest path between u and any other vertex.
- **All-pairs shortest path**
 - Given a graph, find the shortest path between any pair of vertices.
What to find?

- Depending on the problem, you might want:
 - The **value** of the shortest path weight
 - Just a real number
 - The **actual path** having such minimum weight
 - For simple graphs, a sequence of vertices. For multigraphs, a sequence of edges

Example

What is the shortest path between s and v?
Representing shortest paths

- To store all shortest paths from a single source \(u \), we may add
 - For each vertex \(v \), the weight of the shortest path \(\delta(u,v) \)
 - For each vertex \(v \), the “precing” vertex \(\pi(v) \) that allows to reach \(v \) in the shortest path
 - For multigraphs, we need the preceding edge

Example:
- Source vertex: \(u \)
- For any vertex \(v \):
 - double v.weight ;
 - Vertex v.preceding ;
Lemma

- The “previous” vertex in an intermediate node of a minimum path does not depend on the final destination

Example:
- Let $p_1 = \text{shortest path between } u \text{ and } v_1$
- Let $p_2 = \text{shortest path between } u \text{ and } v_2$
- Consider a vertex $w \in p_1 \cap p_2$
- The value of $\pi(w)$ may be chosen in a single way and still guarantee that both p_1 and p_2 are shortest

Shortest path graph

- Consider a source node u
- Compute all shortest paths from u
- Consider the relation $E \pi = \{(v, \text{preceding}, v)\}$
- $E \pi \subseteq E$
- $V \pi = \{ v \in V : v \text{ reachable from } u \}$
- $G \pi = G(V \pi, E \pi)$ is a subgraph of $G(V,E)$
- $G \pi$: the predecessor-subgraph
Shortest path tree

- G_π is a tree (due to the Lemma) rooted in u
- In G_π, the (unique) paths starting from u are always shortest paths
- G_π is not unique, but all possible G_π are equivalent (same weight for every shortest path)

Example

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>NULL</td>
</tr>
<tr>
<td>u</td>
<td>s</td>
</tr>
<tr>
<td>x</td>
<td>u</td>
</tr>
<tr>
<td>v</td>
<td>x</td>
</tr>
<tr>
<td>y</td>
<td>v</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>3</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>v</td>
<td>8</td>
</tr>
<tr>
<td>y</td>
<td>10</td>
</tr>
</tbody>
</table>
Special case

- If G is an un-weighted graph, then the shortest paths may be computed just with a breadth-first visit

Negative-weight cycles

- Minimum paths cannot be defined if there are negative-weight cycles in the graph
- In this case, the minimum path does not exist, because you may always decrease the path weight by going once more through the loop.
- Conventionally, in these case we say that the path weight is \(-\infty\).
Example

Minimum-weight paths from source vertex s

Example
Lemma

- Consider an ordered weighted graph $G=(V,E)$, with weight function $w: E \to \mathbb{R}$.
- Let $p=<v_1, v_2, \ldots, v_k>$ a shortest path from vertex v_1 to vertex v_k.
- For all i,j such that $1 \leq i \leq j \leq k$, let $p_{ij}=<v_i, v_{i+1}, \ldots, v_j>$ be the sub-path of p, from vertex v_i to vertex v_j.
- Therefore, p_{ij} is a shortest path from v_i to v_j.

Corollary

- Let p be a shortest path from s to v.
- Consider the vertex u, such that (u,v) is the last edge in the shortest path.
- We may decompose p (from s to v) into:
 - A sub-path from s to u
 - The final edge (u,v)
- Therefore

 $$\delta(s,v) = \delta(s,u) + w(u,v)$$
Lemma

- If we chose arbitrarily the vertex u, then for all edges $(u,v) \in E$ we may say that
 \[\delta(s,v) \leq \delta(s,u) + w(u,v) \]

Relaxation

- Most shortest-path algorithms are based on the relaxation technique
- It consists of
 - Keeping track of an updated estimate $d[u]$ of the shortest path towards each node u
 - Relaxing (i.e., updating) $d[v]$ (and therefore the predecessor $\pi[v]$) whenever we discover that node v is more conveniently reached by traversing edge (u,v)
Initial state

- **Initialize-Single-Source(G(V,E), s)**
 1. **for** all vertices \(v \in V \)
 2. **do**
 1. \(d[v] \leftarrow \infty \)
 2. \(\pi[v] \leftarrow \text{NIL} \)
 3. \(d[s] \leftarrow 0 \)

Relaxation

- We consider an edge \((u,v)\) with weight \(w\)
- **Relax(u, v, w)**
 1. if \(d[v] > d[u]+w(u,v) \)
 2. then
 1. \(d[v] \leftarrow d[u]+w(u,v) \)
 2. \(\pi[v] \leftarrow u \)
Example 1

Before: Shortest path to \(v \) weights 9, does not contain \((u,v)\)

After: Shortest path to \(v \) weights 7, the path includes \((u,v)\)

Example 2

Before: Shortest path to \(v \) weights 6, does not contain \((u,v)\)

After: No relaxation possible, shortest path unchanged
Lemma

- Consider an ordered weighted graph $G=(V,E)$, with weight function $w: E \rightarrow \mathbb{R}$.
- Let (u,v) be an edge in G.
- After relaxation of (u,v) we may write that:
 - $d[v] \leq d[u] + w(u,v)$

Lemma

- Consider an ordered weighted graph $G=(V,E)$, with weight function $w: E \rightarrow \mathbb{R}$ and source vertex $s \in V$. Assume that G has no negative-weight cycles reachable from s.

Therefore

- After calling Initialize-Single-Source(G,s), the predecessor subgraph G^π is a rooted tree, with s as the root.
- Any relaxation we may apply to the graph does not invalidate this property.
Lemma

- Given the previous definitions.
- Apply any possible sequence of relaxation operations
- Therefore, for each vertex v
 - $d[v] \geq \delta(s,v)$
- Additionally, if $d[v] = \delta(s,v)$, then the value of $d[v]$ will not change anymore due to relaxation operations.

Shortest path algorithms

- Differ according to one-source or all-sources requirement
- Adopt repeated relaxation operations
- Vary in the order of relaxation operations they perform
- May be applicable (or not) to graph with negative edges (but no negative cycles)
Floyd-Warshall algorithm

Graphs: Finding shortest paths

- Computes the all-source shortest path
- \(\text{dist}[i][j] \) is an \(n \)-by-\(n \) matrix that contains the length of a shortest path from \(v_i \) to \(v_j \).
- if \(\text{dist}[u][v] = \infty \), there is no path from \(u \) to \(v \)
- \(\text{pred}[s][j] \) is used to reconstruct an actual shortest path: stores the predecessor vertex for reaching \(v_j \) starting from source \(v_s \)
Floyd-Warshall: initialization

```
allPairsShortestPath (G)
1. foreach u ∈ V do
2. foreach v ∈ V do
3. dist[u][v] = ∞
4. pred[u][v] = −1
5. dist[u][u] = 0
6. foreach neighbor v of u do
7. dist[u][v] = weight of edge (u,v)
8. pred[u][v] = u
```

Example, after initialization
Floyd-Warshall: relaxation

9. \textbf{foreach} \(t \in V \) \textbf{do}
10. \textbf{foreach} \(u \in V \) \textbf{do}
11. \textbf{foreach} \(v \in V \) \textbf{do}
12. \hspace{1cm} newLen = \text{dist}[u][t] + \text{dist}[t][v]
13. \hspace{1cm} \textbf{if} \ (\text{newLen} < \text{dist}[u][v]) \ \textbf{then}
14. \hspace{1cm} \text{dist}[u][v] = \text{newLen}
15. \hspace{1cm} \text{pred}[u][v] = \text{pred}[t][v]

Example, after step \(t=0 \)

\[\begin{array}{c|cccc}
 & 0 & 1 & 2 & 3 & 4 \\
 0 & 0 & 2 & \infty & \infty & 4 \\
 1 & \infty & 0 & 3 & \infty & \infty \\
 2 & \infty & \infty & 0 & 5 & 1 \\
 3 & 8 & 10 & \infty & 0 & 12 \\
 4 & \infty & \infty & \infty & 7 & 0 \\
\end{array} \]
Example, after step t=1

Example, after step t=2
Example, after step t=3

The Floyd-Warshall is basically executing 3 nested loops, each iterating over all vertices in the graph.

Complexity: $O(V^3)$
Implementation

```java
public class FloydWarshallShortestPaths<V,E>
```

The Floyd-Warshall algorithm finds all shortest paths (all pairs of them) in $O(n^3)$ time. This also works out for the graph diameter during the process.

Constructor Summary

```java
public FloydWarshallShortestPaths (Graph<V,E> graph)
```

Method Summary

```java
public static double allShortestPaths ()
```

```java
public static double allShortestPaths (V a, V b)
```

```java
public static double allShortestPaths (V a, V b, V c)
```

```java
public static double shortestPath (V a, V b)
```

```java
public static double shortestPath (V a, V b, V c)
```

Graphs: Finding shortest paths

Bellman-Ford-Moore Algorithm
Bellman-Ford-Moore Algorithm

- Solution to the single-source shortest path (SSSP) problem in graph theory
- Based on relaxation (for every vertex, relax all possible edges)
- Does not work in presence of negative cycles
 - but it is able to detect the problem
- $O(V \cdot E)$

Bellman-Ford-Moore Algorithm

```
dist[s] ← 0 \quad \text{(distance to source vertex is zero)}
for all \ v ∈ V\{s\}
    do dist[v] ← \infty \quad \text{(set all other distances to infinity)}
for i ← 0 to \ |V|\n    for all \ (u, v) ∈ E
        do if \ dist[v] > dist[u] + w(u, v) \quad \text{(if new shortest path found)}
           then \ d[v] ← d[u] + w(u, v) \quad \text{(set new value of shortest path)}
               (if desired, add traceback code)
for all \ (u, v) ∈ E \quad \text{(sanity check)}
    do if \ dist[v] > dist[u] + w(u, v)
        then PANIC!
```
Dijkstra’s Algorithm

Graphs: Finding shortest paths

Dijkstra’s algorithm

- Solution to the single-source shortest path (SSSP) problem in graph theory
- Works on both directed and undirected graphs
- All edges must have nonnegative weights
 - the algorithm would miserably fail
- Greedy
 - … but guarantees the optimum!
Dijkstra’s algorithm

\[\text{dist}[s] \leftarrow 0 \] (distance to source vertex is zero)

for all \(v \in V - \{s\} \)

\[\text{dist}[v] \leftarrow \infty \] (set all other distances to infinity)

\(S \leftarrow \emptyset \) (S, the set of visited vertices is initially empty)

\(Q \leftarrow V \) (Q, the queue initially contains all vertices)

while \(Q \neq \emptyset \) (while the queue is not empty)

\[\text{dist}[v] \leftarrow \infty \] (set all other distances to infinity)

\(S \leftarrow S \cup \{u\} \) (add u to list of visited vertices)

for all \(v \in \text{neighbors}[u] \)

\[\text{if } \text{dist}[v] > \text{dist}[u] + w(u, v) \] (if new shortest path found)

\[\text{then } \text{dist}[v] \leftarrow \text{dist}[u] + w(u, v) \] (set new value of shortest path)

(if desired, add traceback code)
Dijkstra Animated Example

\[
Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
\end{array}
\]

\[
S: \{ A \}
\]
Dijkstra Animated Example

\[Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty
\end{array} \]

\[S: \{ A, C \} \]

Dijkstra Animated Example

\[Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty
\end{array} \]

\[S: \{ A, C \} \]
Dijkstra Animated Example

Q: A B C D E

0 ∞ ∞ ∞ ∞

10 3 ∞ ∞

7 11 5

S: $\{A, C, E\}$

Dijkstra Animated Example

Q: A B C D E

0 ∞ ∞ ∞ ∞

10 3 ∞ ∞

7 11 5

S: $\{A, C, E\}$
Why it works

- A formal proof would take longer than this presentation, but we can understand how the argument works intuitively
 - Think of Dijkstra’s algorithm as a water-filling algorithm
 - Remember that all edge’s weights are positive
Dijkstra efficiency

- The simplest implementation is: \(O(E + V^2)\)

- But it can be implemented more efficiently: \(O(E + V \cdot \log V)\)

Floyd–Warshall: \(O(V^3)\)
Bellman-Ford-Moore: \(O(V \cdot E)\)

Applications

- Dijkstra’s algorithm calculates the shortest path to every vertex from vertex \(s\) (SSSP)
- It is about as computationally expensive to calculate the shortest path from vertex \(u\) to every vertex using Dijkstra’s as it is to calculate the shortest path to some particular vertex \(t\)
- Therefore, anytime we want to know the optimal path to some other vertex \(t\) from a determined origin \(s\), we can use Dijkstra’s algorithm (and stop as soon \(t\) exit from \(Q\))
Applications

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

Dijkstra's Shortest Path Algorithm

- Find shortest path from \texttt{s} to \texttt{t}
Dijkstra's Shortest Path Algorithm

\[S = \{ \} \]
\[Q = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

$S = \{ s \}$
$Q = \{ 2, 3, 4, 5, 6, 7, t \}$
Dijkstra's Shortest Path Algorithm

$S = \{ s, 2 \}$
$Q = \{ 3, 4, 5, 6, 7, t \}$

decrease key
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[Q = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[Q = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]
\[Q = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[Q = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[Q = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7, \tau \} \]
\[Q = \{ \tau \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[Q = \{ \} \]

Shortest Paths wrap-up

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Problem</th>
<th>Efficiency</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floyd-Warshall</td>
<td>AP</td>
<td></td>
<td>No negative cycles</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>SS</td>
<td></td>
<td>No negative cycles</td>
</tr>
<tr>
<td>Repeated Bellman-Ford</td>
<td>AP</td>
<td></td>
<td>No negative cycles</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>SS</td>
<td></td>
<td>No negative edges</td>
</tr>
<tr>
<td>Repeated Dijkstra</td>
<td>AP</td>
<td></td>
<td>No negative edges</td>
</tr>
</tbody>
</table>
public class FloydWarshallShortestPaths<V,E>
public class BellmanFordShortestPath<V,E>
public class DijkstraShortestPath<V,E>

\[
\text{List<GraphPath<V,E>> getShortestPaths(V v)}
\]

\[
\text{GraphPath<V,E> getShortestPath(V a, V b)}
\]

\[
\text{GraphPath<V,E> getPath()}
\]

Resources

Licenza d’uso

Queste diapositive sono distribuite con licenza Creative Commons “Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)”

Sei libero:
- di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest’opera
- di modificare quest’opera

Alle seguenti condizioni:
- Attribuzione — Devi attribuire la paternità dell’opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l’opera.
- Non commerciale — Non puoi usare quest’opera per fini commerciali.
- Condividi allo stesso modo — Se alteri o trasformi quest’opera, o se la usi per crearne un’altra, puoi distribuire l’opera risultante solo con una licenza identica o equivalente a questa.

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/