Computational complexity 1

How to measure the efficiency of an algorithm

Background

- What is an Algorithm?
- A problem can be solved by many algorithms
 - E.g., sorting data
- An algorithm is a method or a process followed to solve a problem
 - I.e., a recipe
- An algorithm takes the input to a problem (function) and transforms it to the output
 - I.e., a mapping
Why consider Efficiency?

- There are often many algorithms to solve a problem
- How do we choose between them? (Usually) conflicting goals:
 - To design an algorithm that is easy to understand, code, debug
 - software engineering
 - To design an algorithm that makes efficient use of the computer’s resources
 - data structures and algorithm analysis

(Un programma che funziona) in fretta vs. Un programma che (funziona in fretta)
Why consider Efficiency?

- There are often many algorithms to solve a problem.
- How do we choose between them? (Usually conflicting goals):
 - To design an algorithm that is easy to understand, code, debug.
 - software engineering
 - To design an algorithm that makes efficient use of the computer’s resources.
 - data structures and algorithm analysis

from the LinkedList javadoc page:
“All of the operations perform as could be expected for a doubly-linked list.”

How to Measure Efficiency?

- Critical resources
 - programmer’s effort
 - time, space (disk, RAM)
- Analysis
 - empirical (run programs)
 - analytical (asymptotic algorithm analysis)
- Worst case vs. Average case
Empirical Approach

- Implement each candidate
 - That could be lots of work – also error-prone
- Run it
 - Which inputs?
 - Worst case, average case, or best case?
- Time it
 - What machines
 - Which OS?

Analytical Approach

- How to solve “which algorithm” problems without machines nor test data?
Analytical Approach

- An algorithm is a mapping
- For most algorithms, running time depends on "size" of the input
- Running time is expressed as $T(n)$
 - some function T
 - input size n

Bubble sort

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>unsorted</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6 > 1, swap</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6 > 2, swap</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6 > 3, swap</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>6 > 4, swap</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>6 > 5, swap</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1 < 2, ok</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2 < 3, ok</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3 < 4, ok</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>4 < 5, ok</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sorted</td>
</tr>
</tbody>
</table>
The bubble sort takes $(n^2-n)/2$ “steps”

Different implementations/assembly languages

- Program A on an Intel Pentium IV: $T(n) = 58(n^2-n)/2$
- Program B on a Motorola: $T(n) = 84(n^2-2n)/2$
- Program C on an Intel Pentium V: $T(n) = 44(n^2-n)/2$

Note that each has an n^2 term

as n increases, the other terms will drop out

As a result:

- Program A on Intel Pentium IV: $T(n) \approx 29n^2$
- Program B on Motorola: $T(n) \approx 42n^2$
- Program C on Intel Pentium V: $T(n) \approx 22n^2$
Analysis

- As processors change, the constants will always change
 - The exponent on \(n \) will not
 - We should not care about the constants

As a result:
- Program A: \(T(n) \approx n^2 \)
- Program B: \(T(n) \approx n^2 \)
- Program C: \(T(n) \approx n^2 \)

- Bubble sort: \(T(n) \approx n^2 \)

Intuitive motivations

- Asymptotic notation captures behavior of functions for large values of \(x \).
- Dominant term of \(3x^3 + 5x^2 - 9 \) is \(3x^3 \)
- As \(x \) becomes larger and larger, other terms become insignificant and only \(3x^3 \) remains in the picture
\[y = 3x^3 + 5x^2 - 9 \]

\[y = x^3 \]

\[y = x^2 \]

\[y = x \]
\[y = 3x^3 + 5x^2 - 9 \]

\[y = 5x^3 \]
Complexity Analysis

- **O(·)**
 - big o (big oh)
- **Ω(·)**
 - big omega
- **Θ(·)**
 - big theta

O(·)

- Upper Bounding Running Time
- Why?
 - Little-oH
 - "Order of"
 - D’Oh
Upper Bounding Running Time

- $f(n)$ is $O(g(n))$ if f grows “at most as fast as” g

Big-O (formal)

- Let f and g be two functions such that $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$

- if there exists positive constants c and n_0 such that $f(x) \leq cg(x)$ for all $n > n_0$

- then we can write $f \sim O(g)$
Big-O (formal alt)

- Let f and g be two functions such that
 \[f, g : \mathbb{N} \to \mathbb{R}^+ \]

- if there exists positive constants c and n_0 such that
 \[0 \leq \lim_{n \to \infty} \frac{f}{g} = c < \infty \]

- then we can write
 \[f \sim g = O(n) \]

Example

- \((\log n)^2 = O(n)\)

- \(f(n) = (\log n)^2\)
 \(g(n) = n\)

- \((\log n)^2 \leq n\) for all \(n \geq 16\), so \((\log n)^2\) is \(O(n)\)
Notational Issues

- Big-O notation is a way of comparing functions.
- Notation quite unconventional.
 - e.g., $3x^3 + 5x^2 - 9 = O(x^3)$
- Doesn’t mean
 - “$3x^3 + 5x^2 - 9$ equals the function $O(x^3)$”
 - “$3x^3 + 5x^2 - 9$ is big oh of x^3”
- But
 - “$3x^3 + 5x^2 - 9$ is dominated by x^3”

Common Misunderstanding

- $3x^3 + 5x^2 - 9 = O(x^3)$
- However, also true are:
 - $3x^3 + 5x^2 - 9 = O(x^4)$
 - $x^3 = O(3x^3 + 5x^2 - 9)$
 - $\sin(x) = O(x^4)$
- Note:
 - Usage of big-O typically involves mentioning only the most dominant term
 - “The running time is $O(x^{2.5})$”
Lower Bounding Running Time

- $f(n)$ is $\Omega(g(n))$ if f grows “at least as fast as” g

- $cg(n)$ is an approximation to $f(n)$ bounding from below

Big-Omega (formal)

- Let f and g be two functions such that

 \[f \colon N \rightarrow R^+ \text{ and } g \colon N \rightarrow R^+ \]

- if there exists positive constants c and n_0 such that

 \[f \geq cg \text{ for all } n > n_0 \]

- then we can write

 \[f \sim \Omega(g) \]
Tightly Bounding Running Time

- \(f(n) \) is \(\Theta(g(n)) \) if \(f \) is essentially the same as \(g \), to within a constant multiple.

![Graph showing \(f(n) \), \(c_1 g(n) \), and \(c_2 g(n) \) with \(n_0 \) as a point where the functions are close to each other.]

Big-Theta (formal)

- Let \(f \) and \(g \) be two functions such that:
 \[
 f: \mathbb{N} \rightarrow \mathbb{R}^+ \quad \text{and} \quad g: \mathbb{N} \rightarrow \mathbb{R}^+
 \]

- If there exists positive constants \(c_1, c_2 \) and \(n_0 \) such that:
 \[
 c_1 g(n) \leq f(n) \leq c_2 g(n) \quad \text{for all} \quad n > n_0
 \]

- Then we can write \(f \sim \Theta(g) \).
Big-Θ, Big-O, and Big-Ω

- Big-Θ: reverse of big-O. I.e.
 \[f(x) = \Theta(g(x)) \]
 iff
 \[g(x) = O(f(x)) \]
- so \(f(x) \) asymptotically dominates \(g(x) \)
Big-Ω and Big-Θ

- Big-Θ: domination in both directions. I.e.
 \[
 f(x) = \Theta(g(x))
 \]
 iff
 \[
 f(x) = O(g(x)) \land f(x) = \Omega(g(x))
 \]

Problem

- Order the following from smallest to largest asymptotically. Group together all functions which are big-Θ of each other:

 \[
 x + \sin x, \ln x, x + \sqrt{x}, \frac{1}{x}, 13 + \frac{1}{x}, 13 + x, e^x, x^e, x^x
 \]
 \[
 (x + \sin x)(x^{20} - 102), x \ln x, x(\ln x)^2, \log_2 x
 \]
Solution

\[\frac{1}{x} \]
\[13 + \frac{1}{x} \]
\[\ln x \quad \log_2 x \]
\[x + \sin x, \frac{1}{x} \]
\[x \ln x \]
\[x(\ln x)^2 \]
\[x^e \]
\[(x + \sin x)(x^{20} - 102) \]
\[e^x \]
\[x^x \]
Practical approach

![Graph showing comparisons between different functions: Exponential, Cubic, Quadratic, Log-linear, Linear, Logarithmic.](image)

<table>
<thead>
<tr>
<th>Class</th>
<th>Complexity</th>
<th>Number of Operations and Execution Time (1 instr/µsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n 10^2 10^3</td>
</tr>
<tr>
<td>constant</td>
<td>$O(1)$</td>
<td>1 1 µsec 1 1 µsec</td>
</tr>
<tr>
<td>logarithmic</td>
<td>$O(\log n)$</td>
<td>3.32 3 µsec 6.64 7 µsec 9.97 10 µsec</td>
</tr>
<tr>
<td>linear</td>
<td>$O(n)$</td>
<td>10 10 µsec 102 100 µsec 103 1 msec</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>33.2 33 µsec 664 664 µsec 9970 10 msec</td>
</tr>
<tr>
<td>quadratic</td>
<td>$O(n^2)$</td>
<td>104 100 µsec 10^5 10 msec 10^6 1 sec</td>
</tr>
<tr>
<td>cubic</td>
<td>$O(n^3)$</td>
<td>105 1 msec 10^6 1 sec 10^9 16 min</td>
</tr>
<tr>
<td>exponential</td>
<td>$O(2^n)$</td>
<td>1024 10 m sec 10^{10} 3.5 x 10^{17} yrs 10^{36}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>10^4</th>
<th>10^5</th>
<th>10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>logarithmic</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>linear</td>
<td>10^4</td>
<td>10^5</td>
<td>10^6</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>10^5</td>
<td>10^6</td>
<td>10^7</td>
</tr>
<tr>
<td>quadratic</td>
<td>10^8</td>
<td>10^9</td>
<td>10^{10}</td>
</tr>
<tr>
<td>cubic</td>
<td>10^{12}</td>
<td>10^{15}</td>
<td>10^{18}</td>
</tr>
<tr>
<td>exponential</td>
<td>10^{300}</td>
<td>10^{400}</td>
<td>10^{500}</td>
</tr>
</tbody>
</table>
Would it be possible?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Foo</th>
<th>Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>$O(n^2)$</td>
<td>$O(2^n)$</td>
</tr>
<tr>
<td>n = 100</td>
<td>10s</td>
<td>4s</td>
</tr>
<tr>
<td>n = 1000</td>
<td>12s</td>
<td>4.5s</td>
</tr>
</tbody>
</table>

Determination of Time Complexity

- Because of the approximations available through Big-Oh, the actual $T(n)$ of an algorithm is not calculated
 - $T(n)$ may be determined empirically
 - Big-Oh is usually determined by application of some simple 5 rules
Rule #1

- Simple program statements are assumed to take a constant amount of time which is $O(1)$

Rule #2

- Differences in execution time of simple statements is ignored
Rule #3

> In conditional statements the worst case is always used

Rule #4 – the “sum” rule

> The running time of a sequence of steps has the order of the running time of the largest

> E.g.,
 > f(n) = O(n^2)
 > g(n) = O(n^3)
 > f(n) + g(n) = O(n^3)
Rule #5 – the “product” rule

- If two processes are constructed such that second process is repeated a number of times for each \(n \) in the first process, then \(O \) is equal to the product of the orders of magnitude for both products.

- E.g.,
 - For example, a two-dimensional array has one for loop inside another and each internal loop is executed \(n \) times for each value of the external loop.
 - The function is \(O(n^2) \)

Nested Loops

```c
for(int t=0; t<n; ++t) {
    for(int u=0; u<n; ++u) {
        ++zap;
    }
}
```

\(O(n) \) \(O(1) \)
Nested Loops

```java
for(int t=0; t<n; ++t) {
    for(int u=0; u<n; ++u) {
        ++zap;
    }
}
```

$O(n^2)$

Nested Loops

```java
for(int t=0; t<n; ++t) {
    for(int u=0; u<n; ++u) {
        ++zap;
    }
}
```

$O(n)$
Nested Loops

```c
for(int t=0; t<n; ++t) {
    for(int u=0; u<n; ++u) {
        ++zap;
    }
}
```

$O(n^2)$

Note: Running time grows with nesting rather than the length of the code
More Nested Loops

\[
\sum_{i=0}^{n-1} n-i = \frac{n(n-1)}{2} = \frac{n^2-n}{2} = O(n^2)
\]

Sequential statements

\[
\begin{align*}
&\text{for(int } z=0; z<n; ++z) &\text{O(n)} \\
&\quad \text{zap}[z] = 0; \\
&\text{for(int } t=0; t<n; ++t) &\text{O(n^2)} \\
&\quad \text{for(int } u=t; u<n; ++u) \\
&\quad \quad \quad \quad \quad \quad \quad \text{O(n^2)} \quad \text{O(n^2)}
\end{align*}
\]

Running time: \(\max(O(n), O(n^2)) = O(n^2)\)
for(int t=0; t<n; ++t) {
 if(t%2) {
 for(int u=t; u<n; ++u) {
 ++zap;
 }
 } else {
 zap = 0;
 }
}

\[O(n) \]

\[O(1) \]

\[O(n^2) \]
Tips

- Focus only on the dominant (high cost) operations and avoid a line-by-line exact analysis
- Break algorithm down into “known” pieces
- Identify relationships between pieces
 - Sequential is additive
 - Nested (loop / recursion) is multiplicative
- Drop constants
- Keep only dominant factor for each variable
Caveats

- Real time vs. complexity

- CPU time vs. RAM vs. disk
Caveats

- Real time vs. complexity
- CPU time vs. RAM vs. disk
- Worse, Average or Best Case?

Worse, Average or Best Case?

![Graph showing worse, average, and best case scenarios.](image)
Worse, Average or Best Case?

- Depends on input problem instance type

![Diagram showing input space, worse configuration, neither worse or best, and best configuration leading to worse-case, average-case, and best-case behaviors.]

Basic Asymptotic Efficiency Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>Algorithm ignores input (i.e., can’t even scan input)</td>
</tr>
</tbody>
</table>
Basic Asymptotic Efficiency Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>Algorithm ignores input (i.e., can't even scan input)</td>
</tr>
<tr>
<td>n</td>
<td>Linear</td>
<td>Algorithm scans its input (at least)</td>
</tr>
<tr>
<td>Ign</td>
<td>Logarithmic</td>
<td>Cuts problem size by constant fraction on each iteration</td>
</tr>
</tbody>
</table>
Basic Asymptotic Efficiency Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>Algorithm ignores input (i.e., can't even scan input)</td>
</tr>
<tr>
<td>lg n</td>
<td>Logarithmic</td>
<td>Cuts problem size by constant fraction on each iteration</td>
</tr>
<tr>
<td>n</td>
<td>Linear</td>
<td>Algorithm scans its input (at least)</td>
</tr>
<tr>
<td>n lg n</td>
<td>“n-log-n”</td>
<td>Some divide and conquer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>Algorithm ignores input (i.e., can't even scan input)</td>
</tr>
<tr>
<td>lg n</td>
<td>Logarithmic</td>
<td>Cuts problem size by constant fraction on each iteration</td>
</tr>
<tr>
<td>n</td>
<td>Linear</td>
<td>Algorithm scans its input (at least)</td>
</tr>
<tr>
<td>n lg n</td>
<td>“n-log-n”</td>
<td>Some divide and conquer</td>
</tr>
<tr>
<td>n^2</td>
<td>Quadratic</td>
<td>Loop inside loop = “nested loop”</td>
</tr>
</tbody>
</table>
Basic Asymptotic Efficiency Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>Algorithm ignores input (i.e., can’t even scan input)</td>
</tr>
<tr>
<td>lg(n)</td>
<td>Logarithmic</td>
<td>Cuts problem size by constant fraction on each iteration</td>
</tr>
<tr>
<td>(n)</td>
<td>Linear</td>
<td>Algorithm scans its input (at least)</td>
</tr>
<tr>
<td>nl(g)</td>
<td>“n-log-n”</td>
<td>Some divide and conquer</td>
</tr>
<tr>
<td>(n^2)</td>
<td>Quadratic</td>
<td>Loop inside loop = “nested loop”</td>
</tr>
<tr>
<td>(n^3)</td>
<td>Cubic</td>
<td>Loop inside nested loop</td>
</tr>
<tr>
<td>(2^n)</td>
<td>Exponential</td>
<td>Algorithm generates all subsets of (n)-element set</td>
</tr>
</tbody>
</table>
Basic Asymptotic Efficiency Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>Algorithm ignores input (i.e., can't even scan input)</td>
</tr>
<tr>
<td>lg n</td>
<td>Logarithmic</td>
<td>Cuts problem size by constant fraction on each iteration</td>
</tr>
<tr>
<td>n</td>
<td>Linear</td>
<td>Algorithm scans its input (at least)</td>
</tr>
<tr>
<td>n lg n</td>
<td>"n-log-n"</td>
<td>Some divide and conquer</td>
</tr>
<tr>
<td>n^2</td>
<td>Quadratic</td>
<td>Loop inside loop = "nested loop"</td>
</tr>
<tr>
<td>n^3</td>
<td>Cubic</td>
<td>Loop inside nested loop</td>
</tr>
<tr>
<td>2^n</td>
<td>Exponential</td>
<td>Algorithm generates all subsets of n-element set</td>
</tr>
<tr>
<td>n!</td>
<td>Factorial</td>
<td>Algorithm generates all permutations of n-element set</td>
</tr>
</tbody>
</table>

Evaluate the complexity

- Linear search?
Evaluate the complexity

- Linear search
 - $O(n)$
- Dichotomic search

Evaluate the complexity

- Linear search
 - $O(n)$
- Dichotomic search
 - $O(\log(n))$
Basic Asymptotic Efficiency Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>Algorithm ignores input (i.e., can't even scan input)</td>
</tr>
<tr>
<td>lg n</td>
<td>Logarithmic</td>
<td>Cuts problem size by constant fraction on each iteration</td>
</tr>
<tr>
<td>n</td>
<td>Linear</td>
<td>Algorithm scans its input (at least)</td>
</tr>
<tr>
<td>n log n</td>
<td>"n-log-n"</td>
<td>Some divide and conquer</td>
</tr>
<tr>
<td>n^2</td>
<td>Quadratic</td>
<td>Loop inside loop = "nested loop"</td>
</tr>
<tr>
<td>n^3</td>
<td>Cubic</td>
<td>Loop inside nested loop</td>
</tr>
<tr>
<td>2^n</td>
<td>Exponential</td>
<td>Algorithm generates all subsets of n-element set</td>
</tr>
<tr>
<td>n!</td>
<td>Factorial</td>
<td>Algorithm generates all permutations of n-element set</td>
</tr>
</tbody>
</table>

ArrayList vs. LinkedList

<table>
<thead>
<tr>
<th>Method</th>
<th>ArrayList</th>
<th>LinkedList</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(element)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove(object)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>get(index)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set(index, element)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>add(index, element)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove(index)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>contains(object)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>indexOf(object)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ArrayList vs. LinkedList

<table>
<thead>
<tr>
<th>Method</th>
<th>ArrayList</th>
<th>LinkedList</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(element)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>remove(object)</td>
<td>$O(n) + O(n)$</td>
<td>$O(n) + O(1)$</td>
</tr>
<tr>
<td>get(index)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>set(index, element)</td>
<td>$O(1)$</td>
<td>$O(n) + O(1)$</td>
</tr>
<tr>
<td>add(index, element)</td>
<td>$O(1) + O(n)$</td>
<td>$O(n) + O(1)$</td>
</tr>
<tr>
<td>remove(index)</td>
<td>$O(n)$</td>
<td>$O(n) + O(1)$</td>
</tr>
<tr>
<td>contains(object)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>indexOf(object)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

In theory, there is no difference between theory and practice.
Licenza d’uso

Queste diapositive sono distribuite con licenza Creative Commons “Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)”

Sei libero:
- di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera
- di modificare quest'opera

Alle seguenti condizioni:
- Attribuzione — Devi attribuire la paternità dell’opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l’opera.
- Non commerciale — Non puoi usare quest'opera per fini commerciali.
- Condividi allo stesso modo — Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.

http://creativecommons.org/licenses/by-nc-sa/3.0/

77 Tecniche di programmazione A.A. 2013/14