SPARQL - Query Language for RDF

Fulvio Corno, Laura Farinetti
Politecnico di Torino
Dipartimento di Automatica e Informatica
e-Lite Research Group – http://elite.polito.it
The “new” Semantic Web vision

- To make data machine processable, we need:
 - Unambiguous names for resources (that may also bind data to real world objects): URIs
 - A common data model to access, connect, describe the resources: RDF
 - Access to that data: SPARQL
 - Define common vocabularies: RDFS, OWL, SKOS
 - Reasoning logics: OWL, Rules

- “SPARQL will make a huge difference” (Tim Berners-Lee, May 2006)
The Semantic Web timeline

- RDF
- DAML+OIL
- OWL
- SPARQL
- SPARQL 1.1
- RIF
- RDFa
- SAWSDL
- Linked Open Data
- POWDER
- SKOS
- HCLS
- RDB2RDF

1999 → 2000 → 2001 → 2002 → 2003 → 2004 → 2005 → 2006 → 2007 → 2008 → 2009 → 2010

F. Corno, L. Farinetti - Politecnico di Torino
SPARQL basics
SPARQL

- **Queries** are very important for distributed RDF data
 - Complex queries into the RDF data are often necessary
 - E.g.: “give me the (a,b) pair of resources, for which there is an x such that (x parent a) and (b brother x) holds” (i.e., return the uncles)

- This is the **goal** of SPARQL (Query Language for RDF)
SPARQL

- **SPARQL 1.0**: W3C Recommendation January 15th, 2008
- **SPARQL 1.1**: W3C Working Draft January 5th, 2012
- SPARQL queries RDF graphs
 - An RDF graph is a set of triples
- SPARQL can be used to express queries across diverse data sources, whether the data is stored natively as RDF or viewed as RDF via middleware
SPARQL and RDF

- It is the triples that matter, not the serialization
 - RDF/XML is the W3C recommendation but it is not a good choice because it allows multiple ways to encode the same graph
- SPARQL uses the Turtle syntax, an N-Triples extension
Turtle - Terse RDF Triple Language

- A serialization format for RDF
- A subset of Tim Berners-Lee and Dan Connolly’s Notation 3 (N3) language
 - Unlike full N3, doesn’t go beyond RDF’s graph model
- A superset of the minimal N-Triples format
- Turtle has no official status with any standards organization, but has become popular amongst Semantic Web developers as a human-friendly alternative to RDF/XML
“Triple” or “Turtle” notation
“Triple” or “Turtle” notation

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#fullName>
"Eric Miller" .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#mailbox>
<mailto:em@w3.org> .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#personalTitle>
"Dr." .

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2000/10/swap/pim/contact#Person> .
“Triple” or “Turtle” notation (abbreviated)

```turtle
w3people:EM#me contact:fullName "Eric Miller" .
w3people:EM#me contact:mailbox <mailto:em@w3.org> .
w3people:EM#me contact:personalTitle "Dr." .
w3people:EM#me rdf:type contact:Person .
```
Turtle - Terse RDF Triple Language

- **Plain text syntax** for RDF
 - Based on Unicode
- **Mechanisms for namespace abbreviation**
- Allows **grouping of triples** according to **subject**
- **Shortcuts for collections**
Turtle - Terse RDF Triple Language

- **Simple triple:**
 subject predicate object .

  ```
  :john rdf:label "John" .
  ```

- **Grouping triples:**
 subject predicate object ; predicate object object ...

  ```
  :john
  rdf:label "John" ;
  rdf:type ex:Person ;
  ex:homePage http://example.org/johnspage/ .
  ```
Prefixes

- Mechanism for namespace abbreviation

  ```lang-xml
  @prefix abbr: <URI>
  ```

- Example:

  ```lang-xml
  @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
  ```

- Default:

  ```lang-xml
  @prefix : <URI>
  ```

- Example:

  ```lang-xml
  @prefix : <http://example.org/myOntology#>
  ```
Identifiers

- URIs: `<URI>`

 http://www.w3.org/1999/02/22-rdf-syntax-ns#

- Qnames (Qualified names)

 `namespace-abbr?:localname`

- Literals

 "string"(@lang)?(^^type)?

"John"
"Hello"@en-GB
"1.4"^^xsd:decimal
Blank nodes

- Simple blank node:
 - [] or _:x

- Blank node as subject:
 - [predicate object ; predicate object ...] .

\[
\text{John} \text{ ex:hasName } "\text{John}" \ . \\
\text{John} \text{ ex:hasFather } _:_x . \\
\text{John} \text{ ex:hasName } "\text{Tolkien}" .
\]
Blank nodes
Collections

(object1 ... objectn)

Short for

```
:doc1 ex:hasAuthor (:john :mary) .
```

```
:doc1 ex:hasAuthor
  [ rdf:first :john;
    rdf:rest [ rdf:first :mary;
               rdf:rest rdf:nil ]
  ] .
```
Example

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntaxns# .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/#> .

<http://www.w3.org/TR/rdf-syntax-grammar>
 dc:title "RDF/XML Syntax Specification (Revised)" ;
 :editor [
 :fullName "Dave Beckett";
 :homePage <http://purl.org/net/dajobe/>
] .
RDF Triplestores

- Basically, databases for triples

- Triplestores do not only store triples, but allow to extract the “interesting” triples, via SPARQL queries
Comparison

Relational database
- Data model
 - Relational data (tables)
- Data instances
 - Records in tables
- Query support
 - SQL
- Indexing mechanisms
 - Optimized for evaluating queries as relational expressions

RDF Triplestore
- Data model
 - RDF graphs
- Data instances
 - RDF triples
- Query support
 - SPARQL
- Indexing mechanisms
 - Optimized for evaluating queries as graph patterns
SPARQL

- Uses SQL-like syntax

```
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
```

- Prefix mechanism to abbreviate URIs
- Variables to be returned
- Query pattern (list of triple patterns)
- Name of the graph
- FROM

F. Corno, L. Farinetti - Politecnico di Torino
SELECT

- Variables selection
- Variables: \(?\text{string} \)

- Syntax: \(\text{SELECT } \text{var}_1, \ldots, \text{var}_n \)
WHERE

- **Graph patterns** to match
- **Set of triples**

 \[
 \{ (subject \ predicate \ object \ .)^* \} \]
- **Subject**: URI, QName, Blank node, Literal, Variable
- **Predicate**: URI, QName, Blank node, Variable
- **Object**: URI, QName, Blank node, Literal, Variable
Graph patterns

- The pattern contains unbound symbols
- By binding the symbols (if possible), subgraphs of the RDF graph are selected
- If there is such a selection, the query returns the bound resources
Graph patterns

- E.g.: (subject, ?p, ?o)
 - ?p and ?o are “unknowns”
Graph patterns

- The triplets in WHERE define the graph pattern, with ?p and ?o “unbound” symbols
- The query returns a list of matching p,o pairs

```
SELECT ?p ?o
WHERE {subject ?p ?o}
```
Example 1

```sql
SELECT ?cat, ?val
  ?x category ?cat }
```

- Returns:

```
[["Total Members",100], ["Total Members",200], ..., 
["Full Members",10], ...]
```
Example 2

```sql
SELECT ?cat, ?val
    ?x category ?cat.
    FILTER(?val>=200).
}
```

- Returns:
  ```javascript
  [["Total Members",200],...]
  ```
Example 3

SELECT ?cat, ?val, ?uri
 ?x category ?cat.
 ?al contains ?x.
 ?al linkTo ?uri }
Example 4

SELECT ?cat, ?val, ?uri
 ?x category ?cat.
OPTIONAL { ?al contains ?x.
 ?al linkTo ?uri } }

- Returns:

```javascript
[["Total Members",100,http://...], ..., 
["Full Members",20, ],...]
```
Other SPARQL Features

- Limit the number of returned results
- Remove duplicates, sort them,…
- Specify several data sources (via URI-s) within the query (essentially, a merge)
- Construct a graph combining a separate pattern and the query results
- Use datatypes and/or language tags when matching a pattern
SPARQL use in practice

- **Locally**, i.e., bound to a programming environments like Jena
 - Jena is a Java framework for building Semantic Web applications; provides an environment for RDF, RDFS and OWL, SPARQL and includes a rule-based inference engine

- **Remotely**, e.g., over the network or into a database
Providing RDF on the Web

- RDF data usually resides in a RDF database (triplestore)
 - …how do we ‘put them out’ on the web?
- SPARQL endpoints (SPARQL query over HTTP)
 - Direct connection to triplestore over HTTP
Example of SPARQL endpoint

This query page is designed to help you test OpenLink Virtuoso SPARQL protocol endpoint. Consult the [Virtuoso Wiki page](http://www.w3.org/People/Berners-Lee/card) describing the service or the [Online Virtuoso Documentation](http://www.w3.org/People/Berners-Lee/card) section RDF Database and SPARQL.

There is also a rich Web based user interface with sample queries. You can use it in the following way:

Dataset

```
http://www.w3.org/People/Berners-Lee/card
```

SPARQL query

```
SELECT ?name
WHERE {
  ?person foaf:name ?name .
}
```

Display Results As: HTML

F. Corno, L. Farinetti - Politecnico di Torino
Providing RDF on the Web

Application

SPARQL Query

Return in XML, JSON, ...

SPARQL “Engine”

GRDDL, (e.g., microformats)

RDFa

SQL–SPARQL “Bridge”

RDF Data

Documents (XHTML, XML, …)

(Relational) Database

F. Corno, L. Farinetti - Politecnico di Torino
Exposing RDF on the web

- Problem: usually HTML content and RDF data are separate
Exposing RDF on the web

- **Separate** HTML content and RDF data
- **Maintenance problem**
 - Both need to be managed separately
 - RDF content and web content have much overlap (redundancy)
 - RDF/XML difficult to author: extra overhead
- **Verification problem**
 - How to differences as content changes?
- **Visibility problem**
 - *Easy to ignore* the RDF content (out of sight, out of mind)
Exposing RDF on the web

- Solution: embed RDF into web content using RDFa

Web Page (HTML) RDF data (XML)

‘Embed’ RDF into HTML

F. Corno, L. Farinetti - Politecnico di Torino
RDFa

- W3C Recommendation (October, 2008)
- Set of extensions to XHTML that allows to annotate XHTML markup with semantics
- Uses attributes from XHTML meta and link elements, and generalizes them so that they are usable on all elements
- A simple mapping is defined so that RDF triples may be extracted
Exposing RDF on the web

- **RDFa: Resource Description Framework-in-attributes**

```html
<div id="saleprice" rel="gr:hasPriceSpecification">
  <div class="saletext">
    Our Price:</div>
  <div class="salenum" typeof="
    gr:UnitPriceSpecification" about="#UnitPriceSpecification_9929089_sale">
    <!-- B:OLI -->
    <span class="price">$29.99</span>
    <span property="gr:hasCurrencyValue" datatype="xsd:float" content="29.99"></span>
    <span property="gr:hasCurrency" datatype="xsd:string" content="USD"></span>
    <span property="gr:hasUnitOfMeasurement" datatype="xsd:string" content="CSS"></span>
    <span property="gr:valueAddedTaxIncluded" datatype="xsd:boolean" content="true"></span>
    <!-- E:OLI -->
  </div>
</div>
```

- Extra (RDFa) markup is ignored by web browsers

F. Corno, L. Farinetti - Politecnico di Torino
XHTML + RDFa example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:foaf="http://xmlns.com/foaf/0.1/">
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 version="XHTML+RDFa 1.0" xml:lang="en">
<head>
 <title>John's Home Page</title>
 <base href="http://example.org/john-d/" />
 <meta property="dc:creator" content="Jonathan Doe" />
</head>
<body>
<h1>John's Home Page</h1>
</p>
</body>
</html>
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://example.org/john-d/"
 <dc:creator xml:lang="en">Jonathan Doe</dc:creator>
 <foaf:nick xml:lang="en">John D</foaf:nick>
 <foaf:interest rdf:resource="http://www.neubauten.org/"/>
 <foaf:interest>
 <rdf:Description rdf:about="urn:ISBN:0752820907">
 <dc:creator xml:lang="en">Tim Berners-Lee</dc:creator>
 <dc:title xml:lang="en">Weaving the Web</dc:title>
 </rdf:Description>
 </foaf:interest>
</rdf:Description>
</rdf:RDF>
RDFa annotations

- Less than 5% of web pages have RDFa annotations (Google, 2010)
- However, many organizations already publish or consume RDFa
 - Google, Yahoo
 - Facebook, MySpace, LinkedIn
 - Best Buy, Tesco, O’Reilly
 - SlideShare, Digg
 - WhiteHouse.gov, Library of Congress, UK government
 - Newsweek, BBC
RDFa is not the only solution …

Percentage of URLs with embedded metadata in various formats

Source: Peter Mika (Yahoo!), RDFa, 2011
Rich snippets

- Several solutions for embedding semantic data in Web
- Three syntaxes known (by Google) as “rich snippets”
 - Microformats
 - RDFa
 - HTML microdata
- All three are supported by Google, while microdata is the “recommended” syntax
First came microformats

- Microformats emerged around 2005
- Some key principles
 - Start by solving simple, specific problems
 - Design for humans first, machines second
- Wide deployment
 - Used on billions of Web pages
- Formats exist for marking up atom feeds, calendars, addresses and contact info, geo- location, multimedia, news, products, recipes, reviews, resumes, social relationships, etc.
Microformats example

```html
<div class="vcard">
  <a class="fn org url" href="http://www.commerce.net/">
    CommerceNet</a>
  <div class="adr">
    <span class="type">Work</span>:  
    <div class="street-address">169 University Avenue</div>
    <span class="locality">Palo Alto</span>,
    <abbr class="region" title="California">CA</abbr>&nbsp;&nbsp;
    <span class="postal-code">94301</span>
    <div class="country-name">USA</div>
  </div>
  <div class="tel">
    <span class="type">Work</span> +1-650-289-4040
  </div>
  <div> Email:  
    <span class="email">info@commerce.net</span>
  </div>
</div>
```
Then came RDFa

- RDFa aims to bridge the gap between human oriented HTML and machine-oriented RDF documents
- Provides XHTML attributes to indicate machine understandable information
- Uses the RDF data model, and Semantic Web vocabularies directly
RDFa example

```html
<div typeof="foaf:Person"
     xmlns:foaf="http://xmlns.com/foaf/0.1/">
<p property="foaf:name">Alice Birpemswick</p>
<p>Email: <a rel="foaf:mbox"
        href="mailto:alice@example.com">alice@example.com</a></p>
<p>Phone: <a rel="foaf:phone" href="tel:+1-617-555-7332">+1 617.555.7332</a></p>
</div>
```
Last but not least, microdata

- Microdata syntax is based on nested groups of name-value pairs
- HTML microdata specification includes
 - An unambiguous parsing model
 - An algorithm to convert microdata to RDF
- Compatible with the Semantic Web via mappings
Microdata syntax

- Microdata properties
 - Annotate an item with text-valued properties using the “itemprop” attribute

```html
<div itemscope>
  <p>My name is <span itemprop="name">Daniel</span>.</p>
</div>
```
Microdata syntax

- **Multiple values** are ok
 - As in RDF, you can have two properties, for the same item (subject) with the same value (object)

```html
<div itemscope>
  <p>Flavors in my favorite ice cream:</p>
  <ul>
    <li itemprop="flavor">Lemon sorbet</li>
    <li itemprop="flavor">Apricot sorbet</li>
  </ul>
</div>
```
Microdata syntax

- **Item types**
 - Correspond to classes in RDF

```html
<section itemscope
    itemtype="http://example.org/animals#cat">
    <h1 itemprop="name">Hedral</h1>
    <p itemprop="desc">Hedral is a male american domestic shorthair, with a fluffy black fur with white paws and belly.</p>
    <img itemprop="img" src="hedral.jpeg" alt="" title="Hedral, age 18 months">
</section>
```
Microdata syntax

- **Global IDs**
 - Items may be given global identifiers, which are URLs
 - They may be, but do not need to be Semantic Web URIs

```html
<dl itemscope
    itemtype="http://vocab.example.net/book"
    itemid="urn:isbn:0-330-34032-8">
    <dt>Title</dt>
    <dd itemprop="title">The Reality Dysfunction</dd>
    <dt>Author</dt>
    <dd itemprop="author">Peter F. Hamilton</dd>
    <dt>Publication date</dt>
    <dd><time itemprop="pubdate" datetime="1996-01-26">
        26 January 1996</time></dd>
</dl>
```
Schema.org

- Schema.org is one of a number of microdata vocabularies
 - It is a shared collection of microdata schemas for use by webmasters
- Includes a type hierarchy, like an RDFS schema
 - Starts with top-level Thing (which has four properties: name, description, url, and image) and DataType types
 - More specific types share properties with broader types; for example, a Place is a more specific type of Thing, and a TouristAttraction is a more specific type of Place
 - More specific items inherit the properties of their parent
Example

```html
<div itemscope itemtype="http://schema.org/Movie">
  <h1 itemprop="name">Avatar</h1>
  <div itemprop="director" itemscope itemtype="http://schema.org/Person">
    Director: <span itemprop="name">James Cameron</span> (born August 16, 1954)
  </div>
  <span itemprop="genre">Science fiction</span>
  <a href="../movies/avatar-theatrical-trailer.html" itemprop="trailer">Trailer</a>
</div>
```
Current schema.org types
Schema.org full hierarchy

Thing: description, image, name, url

CreativeWork: about, accountablePerson, aggregateRating, alternativeHeadline, associatedMedia, audio, author, award, awards, comment, contentLocation, contentRating, contributor, copyrightHolder, copyrightYear, creator, dateCreated, dateModified, datePublished, discussionUrl, editor, encoding, encodings, genre, headline, inLanguage, interactionCount, isFamilyFriendly, keywords, mentions, offers, provider, publisher, publishingPrinciples, review, reviews, sourceOrganization, text, thumbnailUrl, version, video

Article: articleBody, articleSection, wordCount

BlogPosting

NewsArticle: dateline, printColumn, printEdition, printPage, printSection

ScholarlyArticle

Blog: blogPost, blogPosts

Book: bookEdition, bookFormat, illustrator, isbn, numberOfPages

Comment

ItemList: itemListElement, itemListOrder

Map

MediaObject: associatedArticle, bitrate, contentSize, contentUrl, duration, embedUrl, encodesCreativeWork, encodingFormat, expires, height, interactionCount, offers, playerType, regionsAllowed, requiresSubscription, uploadDate, width

AudioObject: transcript

ImageObject: caption, exifData, representativeOfPage, thumbnail

MusicVideoObject

VideoObject: caption, productionCompany, thumbnail, transcript, videoFrameSize, videoQuality

Movie: actor, actors, director, duration, musicBy, producer, productionCompany, trailer

http://www.schema.org/docs/full.html
Item examples

Thing

The most generic type of item.

<table>
<thead>
<tr>
<th>Property</th>
<th>Expected Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>Text</td>
<td>A short description of the item.</td>
</tr>
<tr>
<td>image</td>
<td>URL</td>
<td>URL of an image of the item.</td>
</tr>
<tr>
<td>name</td>
<td>Text</td>
<td>The name of the item.</td>
</tr>
<tr>
<td>url</td>
<td>URL</td>
<td>URL of the item.</td>
</tr>
</tbody>
</table>

More specific types

- CreativeWork
- Event
- Intangible
- Organization
- Person
- Place
- Product
Thing > Product

A product is anything that is made available for sale—for example, a pair of shoes, a concert ticket, or a car.

<table>
<thead>
<tr>
<th>Property</th>
<th>Expected Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties from Thing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>Text</td>
<td>A short description of the item.</td>
</tr>
<tr>
<td>image</td>
<td>URL</td>
<td>URL of an image of the item.</td>
</tr>
<tr>
<td>name</td>
<td>Text</td>
<td>The name of the item.</td>
</tr>
<tr>
<td>url</td>
<td>URL</td>
<td>URL of the item.</td>
</tr>
<tr>
<td>Properties from Product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aggregateRating</td>
<td>AggregateRating</td>
<td>The overall rating, based on a collection of reviews or ratings, of the item.</td>
</tr>
<tr>
<td>brand</td>
<td>Organization</td>
<td>The brand of the product.</td>
</tr>
<tr>
<td>manufacturer</td>
<td>Organization</td>
<td>The manufacturer of the product.</td>
</tr>
<tr>
<td>model</td>
<td>Text</td>
<td>The model of the product.</td>
</tr>
<tr>
<td>offers</td>
<td>Offer</td>
<td>An offer to sell this item—for example, an offer to sell a product, the DVD of a movie, or tickets to an event.</td>
</tr>
<tr>
<td>productID</td>
<td>Text</td>
<td>The product identifier, such as ISBN. For example: <code><meta itemprop='productID' content='isbn:123-456-789'></code>.</td>
</tr>
<tr>
<td>review</td>
<td>Review</td>
<td>A review of the item.</td>
</tr>
<tr>
<td>reviews</td>
<td>Review</td>
<td>Review of the item (legacy spelling; see singular form, review).</td>
</tr>
</tbody>
</table>
SPARQL use in practice

- Where to find meaningful RDF data to search?
- The Linked Data Project
The Linked Data Project
The Linked Data Project

A fundamental prerequisite of the Semantic Web is the existence of large amounts of meaningfully interlinked RDF data on the Web.

“To make the Semantic Web a reality, it is necessary to have a large volume of data available on the Web in a standard, reachable and manageable format. In addition the relationships among data also need to be made available. This collection of interrelated data on the Web can also be referred to as Linked Data. Linked Data lies at the heart of the Semantic Web: large scale integration of, and reasoning on, data on the Web.” (W3C)
The Linked Data Project

- Linked Data is about using the Web to connect related data that wasn’t previously linked, or using the Web to lower the barriers to linking data currently linked using other methods.
- Linked Data is a set of principles that allows publishing, querying and browsing of RDF data, distributed across different servers.
The Linked Data Project

- Community effort to make various open datasets available on the Web as RDF and to set RDF links between data items from different datasets
- The datasets are published according to the Linked Data principles and can therefore be crawled by Semantic Web search engines and navigated using Semantic Web browsers
- Supported by W3C
- Began early 2007
 - http://linkeddata.org/home
The Web of Documents

- Analogy: a global filesystem
- Designed for human consumption
- Primary objects: documents
- Links between documents (or sub-parts)
- Degree of structure in objects: fairly low
- Semantics of content and links: implicit
The Web of Linked Data

- Analogy: a global database
- Designed for machines first, humans later
- Primary objects: things (or descriptions of things)
- Links between things
- Degree of structure in (descriptions of) things: high
- Semantics of content and links: explicit
Linked Data example
Linked Data example
Why publish Linked Data?

- Ease of discovery
- Ease of consumption
 - Standards-based data sharing
- Reduced redundancy
- Added value
 - Build ecosystems around your data/content
Linked Open Data cloud

May 2007

As of May 2007
DBpedia

- DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web.
- DBpedia allows to ask sophisticated queries against Wikipedia, and to link other data sets on the Web to Wikipedia data.
GeoNames

- GeoNames is a geographical database that contains over eight million geographical names
- Available for download free of charge under a creative commons attribution license
Main contributors

- **DBLP** Computer science bibliography
 - Richard Cyganiak, Chris Bizer (FU Berlin)

- **DBpedia** Structured information from Wikipedia
 - Universität Leipzig, FU Berlin, OpenLink

- **DBtune, Jamendo** Creative Commons music repositories
 - Yves Raimond (University of London)

- **Geonames** World-wide geographical database
 - Bernard Vatant (Mondeca), Marc Wick (Geonames)

- **Musicbrainz** Music and artist database
 - Frederick Giasson, Kingsley Idehen (Zitgist)

- **Project Gutenberg** Literary works in the public domain
 - Piet Hensel, Hans Butschalowsky (FU Berlin)

- **Revyu** Community reviews about anything
 - Tom Heath, Enrico Motta (Open University)

- **RDF Book Mashup** Books from the Amazon API
 - Tobias Gauß, Chris Bizer (FU Berlin)

- **US Census Data** Statistical information about the U.S.
 - Josh Tauberer (University of Pennsylvania), OpenLink

- **World Factbook** Country statistics, compiled by CIA
 - Piet Hensel, Hans Butschalowsky (FU Berlin)
September 2008
Statistics on datasets

- http://ckan.net/group/lodcloud
- http://www4.wiwiss.fu-berlin.de/lodcloud/

<table>
<thead>
<tr>
<th>Data set</th>
<th>Size of the data set (number of triples)</th>
<th>Wrapper?</th>
<th>endpoint?</th>
<th>RDF dump?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM (RKB)</td>
<td>12,644,052</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>AudioScrobbler</td>
<td>600,000,000</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>BBC John Peel</td>
<td>277,000</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>BBC Later + TOTP (link not responding - 2009-04-01)</td>
<td>10,000</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>BBC Music</td>
<td>>10,000,000</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>BBC Playcount Data</td>
<td>10,000</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>BBC Programmes</td>
<td>10,000,000</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Budapest BME (RKB)</td>
<td>42,064</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bio2RDF:Affymetrix</td>
<td>45,560,115</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bio2RDF:BioCYC</td>
<td>18,699,622</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bio2RDF:EBI:ChEBI</td>
<td>7,375,253</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bio2RDF:DBpedia</td>
<td>190,790</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bio2RDF:GO</td>
<td>8,188,649</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bio2RDF:HGNC</td>
<td>1,208,802</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bio2RDF:KEGG:Compound</td>
<td>177,199</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bio2RDF:KEGG:Drug</td>
<td>116,822</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Statistics on links between datasets

<table>
<thead>
<tr>
<th>Source data set</th>
<th>Type</th>
<th>Target data set</th>
<th>Link count (range)</th>
<th>Link count (actual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>DBLP (RKB)</td>
<td>> 100,000</td>
<td>834,923</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>LAAS CNRS (RKB)</td>
<td>> 100</td>
<td>173</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>Newcastle (RKB)</td>
<td>> 100</td>
<td>684</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>eprints (RKB)</td>
<td>> 10,000</td>
<td>59,081</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>IRIT Toulouse (RKB)</td>
<td>> 100</td>
<td>729</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>CiteSeer (RKB)</td>
<td>> 1,000,000</td>
<td>1,768,94</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>Pisa (RKB)</td>
<td>> 100</td>
<td></td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>ReseRx (RKB)</td>
<td>> 100</td>
<td></td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>IBM (RKB)</td>
<td>> 100</td>
<td>116</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>IEEE (RKB)</td>
<td>> 1,000</td>
<td>2,267</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>RAE 2001 (RKB)</td>
<td>> 1,000</td>
<td>4,534</td>
</tr>
<tr>
<td>ACM (RKB)</td>
<td>Data Set</td>
<td>ECS Southampton (RKB)</td>
<td>> 1,000</td>
<td>1,358</td>
</tr>
<tr>
<td>AudioScrobbler</td>
<td>Wrapper</td>
<td>Musicbrainz</td>
<td>> 100</td>
<td></td>
</tr>
<tr>
<td>AudioScrobbler</td>
<td>Wrapper</td>
<td>FOAF profiles</td>
<td>> 100,000</td>
<td></td>
</tr>
<tr>
<td>BBC John Peel</td>
<td>Data Set</td>
<td>DBpedia</td>
<td>> 1,000</td>
<td></td>
</tr>
<tr>
<td>BBC Later + TOTP</td>
<td>Data Set</td>
<td>DBpedia</td>
<td>> 1,000</td>
<td></td>
</tr>
</tbody>
</table>
Linked Data success stories

- BBC Music
 - Integrates information from MusicBrainz and Wikipedia for artist/band infopages
 - Information also available in RDF (in addition to web pages)
 - 3rd party applications built on top of the BBC data
 - BBC also contributes data back to the MusicBrainz

- Nytimes
 - Maps its thesaurus of 1 million entity descriptions (people, organisations, places, etc) to Dbpedia and Freebase
Linked Data shopping list

- List of sites/datasets that the “community” would like to see published as Linked Data
 - This list may form the basis for some campaign/action to encourage these data publishers to embrace Linked Data

- http://linkeddata.org/linked-data-shopping-list
The Linked Data principles ("expectations of behavior")

- The Semantic Web isn't just about putting data on the web. It is about making links, so that a person or machine can explore the web of data. With linked data, when you have some of it, you can find other, related, data.

- It is the unexpected re-use of information which is the value added by the web

 (Tim Berners-Lee)
The Linked Data principles ("expectations of behavior")

- **Unambiguous** identifiers for objects (resources)
 - Use URIs as names for things

- **Use the structure** of the web
 - Use HTTP URIs so that people can look up the names

- Make it easy to **discover** information about an object (resource)
 - When someone lookups a URI, provide useful information

- **Link** the object (resource) to related objects
 - Include links to other URIs
Link to existing vocabularies

- For describing classes (categories) and properties (relationships), try to **re-use existing vocabularies**
 - Easier to interoperate if we’re talking the same language!
- Many vocabularies/ontologies out there
 - schema.org is a great place to start looking!
 - Vocabs for products (Good Relations), people (FOAF), social media (SIOC), places, events, businesses, e-commerce, music, etc., you name it…
- If nothing relevant, you can create your own, but make sure you…
 - Publish it!
 - Reconcile (map) it to other vocabularies, if you can
Link to other datasets

- **Popular predicates** for linking

 - owl:equivalentClass
 - owl:sameAs
 - rdfs:seeAlso
 - skos:closeMatch
 - skos:exactMatch
 - skos:related
 - foaf:homepage
 - foaf:topic
 - foaf:based_near
 - foaf:maker/foaf:made
 - foaf:page
 - foaf:primaryTopic

- **Example:**

 - http://dbpedia.org/resource/Canberra
 - owl:sameAs
Link to other Data Sets

- DBpedia
- Wikicompny
- Homepages
- Geonames
- FlickrWrappr

(Wikicompny is a free content licensed worldwide business directory that anyone can edit)

(flickr wrappr extends DBpedia with RDF links to photos posted on flickr)
Linked Data – open issues

- Schema diversity & proliferation
- Quality of data is poor
- No kind of consistency is guarantees
- Issues with reliability of data end-points
 - High down-time is not unusual
 - There is no Service Level Agreement provided
- Querying of linked data is slow
 - Data is distributed on the web
 - Even single SPARQL endpoints can be slow
 - Most end-points are experimental/research projects with no resources for quality guarantees
- Licensing issues
 - Majority of datasets carry no explicit open license
Linked Data tools

Tools for Publishing Linked Data

- **D2R Server**: a tool for publishing relational databases as Linked Data
- **Triplify**: transforms relational data into RDF/LinkedData
- **Pubby**: a Linked Data frontend for SPARQL endpoints

Tools for consuming Linked Data

- **Semantic Web Browsers and Client Libraries**
- **Semantic Web Search Engines**
Pubby

- Many triple stores and other SPARQL endpoints can be accessed only by SPARQL client applications that use the SPARQL protocol
 - It cannot be accessed by the growing variety of Linked Data clients
- Pubby is designed to provide a Linked Data interface to those RDF data sources
- http://www4.wiwiss.fu-berlin.de/pubby/
Pubby
Linked Data browsers – Marbles

- http://marbles.sourceforge.net
- XHTML views of RDF data (SPARQL endpoint), caching, predicate traversal
Linked Data browsers – RelFinder

- http://relfinder.dbpedia.org
- Explore & navigate relationships in a RDF graph
Linked Data browsers – gFacet

- [Link](http://semanticweb.org/wiki/GFacet)
- Graph based visualisation & faceted filtering of RDF data
Linked Data browsers – Forest

- Front-end to FactForge and LinkedLifeData
FactForge and LinkedLifeData

- FactForge
 - Integrates some of the most central LOD datasets
 - General-purpose information (not specific to a domain)
 - 1.2B explicit plus 1B inferred statements
 - The largest upper-level knowledge base

- LinkedLifeData
 - 25 of the most popular life-science datasets
 - 2.7B explicit and 1.4B inferred triples
Linked Data browsers – Information Workbench

An earthquake (also known as a quake, tremor or temblor) is the result of a sudden release of energy in the Earth's crust that creates seismic waves. The seismicity, seismism or seismic activity of an area refers to the frequency, type and size of earthquakes experienced over a period of time. Earthquakes are measured using observations from seismometers. The moment magnitude is the most common scale on which earthquakes larger than approximately 5 are reported for the entire globe. The more numerous earthquakes smaller than magnitude 5 reported by national seismological observatories are measured mostly on the local magnitude scale, also referred to as the Richter scale. These two scales are numerically similar over their range of validity. Magnitude 3 or lower earthquakes are mostly almost imperceptible and magnitude 7 and over potentially cause serious damage over large areas, depending on their depth. The largest earthquakes in historic times have been of magnitude slightly over 9, although there is no limit to the possible magnitude. The most recent large earthquake of magnitude 9.0 or larger...
Home

Switch to English

Linked Open Data: dati aperti collegati e usabili

Linked Open Data Italia pubblica dati aperti e facilmente accessibili da persone e applicazioni. I dati set a disposizione, con licenze aperte e pubblicati in modalità LinkedIn, possono essere direttamente interrogati da qualsiasi applicazione indipendentemente da linguaggi di programmazione e tecnologie.

Stiamo lavorando per pubblicare sempre più dati in diversi settori. Pubblica amministrazione, istruzione, infrastrutture e ricerca sono solo alcuni delle potenziali aree in cui l’accesso libero ai dati può portare giovamenti e aprire nuove opportunità. Seguici su twitter e facebook per tenerti informato sui nuovi dataset pubblicati.

Come collaborare?

Usa i dati. Sperimenta e fornisce feedback facendo query sui dati o provando ad utilizzarli in mash-up e applicazioni.

Suggerisci un dataset. Conosci dei dati pubblici poco accessibili a cui vorresti avere
Benvenuti su CKAN Italia!

Cerca dati
Cerca dataset
CKAN Italia contiene 238 dataset che puoi esplorare, conoscere e scaricare.

Condividi dati
Aggiungi i tuoi dataset, condividili con gli altri e trova altre persone interessate ai tuoi dati.

Collabora
Scopri di più su come lavorare con gli open data con queste risorse:
- GetTheData.org
- DataPatterns.org
- Open Data Manual

Chi altro c'è qui?

EVPSI
Dataset provenienti dal progetto EVPSI (Extracting Value from Public Sector Information), coordinato dal Dipartimento di Scienze Giuridiche di Torino, con il supporto della Regione...
EVPSI ha 52 dataset

LinkedOpenData.it
Dataset creati o gestiti dall'Associazione Linked Open Data Italia.
LinkedOpenData.it ha 4 dataset

Spaghetti Open Data
Dataset segnalati nel gruppo di discussione Spaghetti Open Data.
Spaghetti Open Data ha 6 dataset

Torino Open Data
Dataset rilasciati dalla Città di Torino in occasione di Biennale Democrazia 2011.
Torino Open Data ha 2 dataset

Provincia Autonoma di Trento
Si tratta di tutti i siti del dominio .provincia.tn.it che contengono dati che possono essere scaricati
Provincia Autonoma di Trento ha 4 dataset
dati.piemonte.it
Un gruppo che raccoglie tutti i pacchetti dati presenti sul portale del riuso della Regione Piemonte.
dati.piemonte.it ha 1 dataset
SPARQL syntax
SPARQL query structure

- A SPARQL query includes, in order
 - Prefix declarations, for abbreviating URIs
 - A result clause, identifying what information to return from the query
 - The query pattern, specifying what to query for in the underlying dataset
 - Query modifiers: slicing, ordering, and otherwise rearranging query results
SPARQL query structure

- A SPARQL query includes, in order:

```sparql
# prefix declarations
PREFIX foo: <http://example.com/resources/>
...

# result clause
SELECT ...

# query pattern
WHERE {
    ...
}

# query modifiers
ORDER BY ...
```
Dataset: Friend of a Friend (FOAF)

- **FOAF** is a standard RDF vocabulary for describing people and relationships
- Tim Berners-Lee's FOAF information available at http://www.w3.org/People/Berners-Lee/card

```xml
@prefix card: <http://www.w3.org/People/Berners-Lee/card#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
card:i foaf:name "Timothy Berners-Lee" .
<http://bblfish.net/people/henry/card#me>
foaf:name "Henry Story" .
<http://www.cambridgesemantics.com/people/about/lee>
foaf:name "Lee Feigenbaum" .
card:amy foaf:name "Amy van der Hiel" .
...```
Example 1 – simple triple pattern

- In the graph [http://www.w3.org/People/Berners-Lee/card](http://www.w3.org/People/Berners-Lee/card), find all subjects (?person) and objects (?name) linked with the foaf:name predicate.
- Then return all the values of ?name.
- In other words, find all names mentioned in Tim Berners-Lee’s FOAF file

```sparql
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
 ?person foaf:name ?name .
}
```
SPARQL endpoints

- **Accept queries** and returns results via HTTP
  - Generic endpoints queries any Web-accessible RDF data
  - Specific endpoints are hardwired to query against particular datasets
- **The results of SPARQL queries** can be returned in a variety of formats:
  - XML, JSON, RDF, HTML
  - JSON (JavaScript Object Notation): lightweight computer data interchange format; text-based, human-readable format for representing simple data structures and associative arrays
SPARQL endpoints

- This query is for an arbitrary bit of RDF data (Tim Berners-Lee's FOAF file)

- => generic endpoint to run it

- Possible choices
  - SPARQLer - General purpose processor - [sparql.org](http://sparql.org/sparql.html)
  - OpenLink's Virtuoso (Make sure to choose "Retrieve remote RDF data for all missing source graphs")
  - Redland’s Rasqal
    - [http://librdf.org/rasqal/](http://librdf.org/rasqal/)

F. Corno, L. Farinetti - Politecnico di Torino
SPARQLer

General SPARQL query: input query, set any options and press "Get Results"

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
  ?person foaf:name ?name .
}

Dataset

SPARQL query
OpenLink’s Virtuoso

Dataset

SPARQL query
Example 1 - simple triple pattern

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
    ?person foaf:name ?name .
}
Example 2 – multiple triple pattern

- Find all people in Tim Berners-Lee’s FOAF file that have names and email addresses
- Return each person’s URI, name, and email address

- Multiple triple patterns retrieve multiple properties about a particular resource
- SELECT * selects all variables mentioned in the query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
WHERE {
  ?person foaf:name ?name .
}
Example 2 - multiple triple pattern

<table>
<thead>
<tr>
<th>person</th>
<th>name</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://www.w3.org/People/Connolly/#me">http://www.w3.org/People/Connolly/#me</a></td>
<td>Dan Connolly</td>
<td><a href="mailto:connolly@w3.org">mailto:connolly@w3.org</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/Berners-Lee/card#i">http://www.w3.org/People/Berners-Lee/card#i</a></td>
<td>Timothy Berners-Lee</td>
<td><a href="mailto:timbl@w3.org">mailto:timbl@w3.org</a></td>
</tr>
<tr>
<td><a href="http://www.aaronsw.com/about.xrdf#aaronsw">http://www.aaronsw.com/about.xrdf#aaronsw</a></td>
<td>Aaron Swartz</td>
<td><a href="mailto:me@aaronsw.com">mailto:me@aaronsw.com</a></td>
</tr>
<tr>
<td><a href="http://www.dajobe.org/foaf.rdf#i">http://www.dajobe.org/foaf.rdf#i</a></td>
<td>Dave Beckett</td>
<td><a href="mailto:dave@dajobe.org">mailto:dave@dajobe.org</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/Berners-Lee/card#amy">http://www.w3.org/People/Berners-Lee/card#amy</a></td>
<td>Amy van der Hiel</td>
<td><a href="mailto:amy@w3.org">mailto:amy@w3.org</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/EM/contact#me">http://www.w3.org/People/EM/contact#me</a></td>
<td>Eric Miller</td>
<td><a href="mailto:em@w3.org">mailto:em@w3.org</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/karl/karl-foaf.xrdf#me">http://www.w3.org/People/karl/karl-foaf.xrdf#me</a></td>
<td>Karl Dubost</td>
<td><a href="mailto:karl@w3.org">mailto:karl@w3.org</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/Berners-Lee/card#cm">http://www.w3.org/People/Berners-Lee/card#cm</a></td>
<td>Coralie Mercier</td>
<td><a href="mailto:coralie@w3.org">mailto:coralie@w3.org</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/Berners-Lee/card#dj">http://www.w3.org/People/Berners-Lee/card#dj</a></td>
<td>Dean Jackson</td>
<td><a href="mailto:dean@w3.org">mailto:dean@w3.org</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/Berners-Lee/card#dj">http://www.w3.org/People/Berners-Lee/card#dj</a></td>
<td>Dean Jackson</td>
<td><a href="mailto:dino@grorg.org">mailto:dino@grorg.org</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/Berners-Lee/card#edd">http://www.w3.org/People/Berners-Lee/card#edd</a></td>
<td>Edd Dumbill</td>
<td><a href="mailto:edd@usefulinc.com">mailto:edd@usefulinc.com</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/Berners-Lee/card#edd">http://www.w3.org/People/Berners-Lee/card#edd</a></td>
<td>Edd Dumbill</td>
<td><a href="mailto:edd@xml.com">mailto:edd@xml.com</a></td>
</tr>
<tr>
<td><a href="http://www.w3.org/People/Berners-Lee/card#edd">http://www.w3.org/People/Berners-Lee/card#edd</a></td>
<td>Edd Dumbill</td>
<td><a href="mailto:edd@xmlhack.com">mailto:edd@xmlhack.com</a></td>
</tr>
<tr>
<td><a href="http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf#me">http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf#me</a></td>
<td>Libby Miller</td>
<td><a href="mailto:libby.miller@bristol.ac.uk">mailto:libby.miller@bristol.ac.uk</a></td>
</tr>
<tr>
<td><a href="http://people.csail.mit.edu/lkagal/foaf.rdf#me">http://people.csail.mit.edu/lkagal/foaf.rdf#me</a></td>
<td>Lalana Kagal</td>
<td><a href="mailto:lalana@csail.mit.edu">mailto:lalana@csail.mit.edu</a></td>
</tr>
<tr>
<td>nodeID://1003907694</td>
<td>Susie Stephens</td>
<td><a href="mailto:susie.stephens@gmail.com">mailto:susie.stephens@gmail.com</a></td>
</tr>
</tbody>
</table>
Example 3 – traversing a graph

Find the homepage of anyone known by Tim Berners-Lee
Example 3 – traversing a graph

```sql
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX card: <http://www.w3.org/People/Berners-Lee/card#>
SELECT ?homepage
FROM <http://www.w3.org/People/Berners-Lee/card>
WHERE {
 card:i foaf:knows ?known .
}
```

- The FROM keyword specifies the target graph in the query
- By using ?known as an object of one triple and the subject of another, it is possible to traverse multiple links in the graph
Dataset: DBPedia

- **DBPedia** is an RDF version of information from Wikipedia.
- Contains data derived from Wikipedia’s infoboxes, category hierarchy, article abstracts, and various external links.
- Contains over 100 million triples.
- Dataset: [http://dbpedia.org/sparql/](http://dbpedia.org/sparql/)
Example 4 – exploring DBPedia

- Find 15 example concepts in the DBPedia dataset

```sql
SELECT DISTINCT ?concept
WHERE {
 ?s a ?concept .
} LIMIT 15
```
Example 4 – exploring DBPedia

- LIMIT is a solution modifier that limits the number of rows returned from a query.
- SPARQL has two other solution modifiers:
  - ORDER BY for sorting query solutions on the value of one or more variables.
  - OFFSET, used in conjunction with LIMIT and ORDER BY to take a slice of a sorted solution set (e.g. for paging).
- The SPARQL keyword a is a shortcut for the common predicate rdf:type (class of a resource).
- The DISTINCT modifier eliminates duplicate rows from the query results.
Example 5 – basic SPARQL filters

- Find all landlocked countries with a population greater than 15 million

```
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?country_name ?population
WHERE {
 ?country a type:LandlockedCountries ;
 rdfs:label ?country_name ;
 prop:populationEstimate ?population .
 FILTER (?population > 15000000) .
}
```

- FILTER constraints use boolean conditions to filter out unwanted query results
- A semicolon (;) can be used to separate two triple patterns that share the same subject
SPARQL filters

- Conditions on literal values
- Syntax

```
FILTER expression
```

- Examples

```
FILTER (?age > 30)
FILTER isIRI(?x)
FILTER !BOUND(?y)
```
SPARQL filters

- **BOUND(var)**
  - true if var is bound in query answer
  - false, otherwise
  - !BOUND(var) enables negation-as-failure

- **Testing types**
  - **isIRI(A):** A is an “Internationalized Resource Identifier”
  - **isBLANK(A):** A is a blank node
  - **isLITERAL(A):** A is a literal
SPARQL filters

- Comparison between RDF terms
  - Comparison between Numeric and Date types
- Boolean AND/OR
- Basic arithmetic
Example 5 – basic SPARQL filters

- Note all the translated duplicates in the results
- How can we deal with that?
Example 6 – SPARQL filters

Find me all landlocked countries with a population greater than 15 million (revisited), with the highest population country first

PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?country_name ?population
WHERE {
    ?country a type:LandlockedCountries ;
    rdfs:label ?country_name ;
    prop:populationEstimate ?population .
    FILTER (?population > 15000000 &&
        langMatches(lang(?country_name), "EN")) .
} ORDER BY DESC(?population)
Example 6 – SPARQL filters

- **lang** extracts a literal’s language tag, if any
- **langMatches** matches a language tag against a language range

<table>
<thead>
<tr>
<th>country_name</th>
<th>population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia</td>
<td>78254090</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>31889923</td>
</tr>
<tr>
<td>Uganda</td>
<td>309000000</td>
</tr>
<tr>
<td>Nepal</td>
<td>29519114</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>27372000</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>15217711</td>
</tr>
</tbody>
</table>
Dataset: Jamendo

- **Jamendo** is a community collection of music all freely licensed under [Creative Commons licenses](http://www.jamendo.com/it/)

- **DBTune.org** hosts a queryable RDF version of information about Jamendo's music collection

  - Data on thousands of artists, tens of thousands of albums, and nearly 100,000 tracks

  - [http://dbtune.org/jamendo/store/](http://dbtune.org/jamendo/store/)
Example 7 – the wrong way

- Find all Jamendo artists along with their image, home page, and the location they’re near

```sparql
PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?img ?hp ?loc
WHERE {
 ?a a mo:MusicArtist;
 foaf:name ?name;
 foaf:img ?img;
 foaf:homepage ?hp;
 foaf:based_near ?loc.
}
```
Example 7 – DBTune SPARQL endpoint

Jamendo has information on about 3,500 artists

Trying the query we only get 2,667 results. What's wrong?

http://dbtune.org/jamendo/store/
Example 7 – the right way

- Not every artist has an image, homepage, or location!
- OPTIONAL tries to match a graph pattern, but doesn't fail the whole query if the optional match fails
- If an OPTIONAL pattern fails to match for a particular solution, any variables in that pattern remain unbound (no value) for that solution

PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?img ?hp ?loc
WHERE {
  ?a a mo:MusicArtist ;
  foaf:name ?name .
  OPTIONAL { ?a foaf:img ?img }
  OPTIONAL { ?a foaf:homepage ?hp }
  OPTIONAL { ?a foaf:based_near ?loc }
}
Dataset: GovTrack

- GovTrack provides SPARQL access to data on the U.S. Congress
- Contains over 13,000,000 triples about legislators, bills, and votes
- [http://www.govtrack.us/](http://www.govtrack.us/)
Example 8 – querying alternatives

- Find Senate bills that either John McCain or Barack Obama sponsored and the other cosponsored

```sparql
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?title ?sponsor ?status
WHERE {
 { ?bill bill:sponsor ?mccain ; bill:cosponsor ?obama . }
 UNION
 { ?bill bill:sponsor ?obama ; bill:cosponsor ?mccain . }
 ?bill a bill:SenateBill ;
 bill:status ?status ;
 bill:sponsor ?sponsor ;
 ?obama foaf:name "Barack Obama" .
 ?mccain foaf:name "John McCain" .
}
```
Example 8 – GovTrack specific endpoint

- The UNION keyword forms a disjunction of two graph patterns: solutions to both sides of the UNION are included in the results

```sparql
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?title ?sponsor ?status
WHERE {
 { ?bill bill:sponsor ?mccain ; bill:cosponsor ?obama . }
 UNION
 { ?bill bill:sponsor ?obama ; bill:cosponsor ?mccain . }
}
```

http://www.govtrack.us/developers/rdf.xpd
RDF datasets

- All queries so far have been against a single graph
- In SPARQL this is known as the default graph
- RDF datasets are composed of a single default graph and zero or more named graphs, identified by a URI
- Named graphs can be specified with one or more `FROM NAMED` clauses, or they can be hardwired into a particular SPARQL endpoint
- The SPARQL `GRAPH` keyword allows portions of a query to match against the named graphs in the RDF dataset
- Anything outside a `GRAPH` clause matches against the default graph
Dataset: semanticweb.org

- **data.semanticweb.org** hosts RDF data regarding workshops, schedules, and presenters for the International Semantic Web (ISWC) and European Semantic Web Conference (ESWC) series of events.
- Presents data via FOAF, SWRC, and iCal ontologies.
- The data for each individual ISWC or ESWC event is stored in its own named graph.
  - i.e., there is one named graph per conference event contained in this dataset.
- [http://data.semanticweb.org/](http://data.semanticweb.org/)
Example 9 – querying named graphs

- Find people who have been involved with at least three ISWC or ESWC conference events

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?person
WHERE {
  GRAPH ?g1 { ?person a foaf:Person }
  GRAPH ?g2 { ?person a foaf:Person }
  GRAPH ?g3 { ?person a foaf:Person }
  FILTER(?g1 != ?g2 && ?g1 != ?g3 && ?g2 != ?g3) .
}
Example 9 – querying named graphs

- The GRAPH ?g construct allows a pattern to match against one of the named graphs in the RDF dataset.
- The URI of the matching graph is bound to ?g (or whatever variable was actually used).
- The FILTER assures that we’re finding a person who occurs in three distinct graphs.
- The Web interface used for this SPARQL query defines the foaf: prefix, which is why it is omitted here.
Data.semanticweb.org specific SPARQL endpoint

http://data.semanticweb.org/snorql/

Snorql: Exploring http://data.semanticweb.org/sparql

GRAPH: Default graph. List named graphs

GRAPH: Named graph goes here. Switch back to default graph

SPARQL:

```
SELECT DISTINCT ?person
WHERE {
 GRAPH ?g1 { ?person a foaf:Person }
 GRAPH ?g2 { ?person a foaf:Person }
 GRAPH ?g3 { ?person a foaf:Person }
 FILTER(?g1 != ?g2 & & ?g1 != ?g3 & & ?g2 != ?g3) .
}
```

Results: Browse XSLT stylesheet URL: snorql/xml-to-html.xsl Go! Reset

Powered by Sesame
SPARQL 1.1 extensions

- Projected expressions
  - Adds the ability for query results to contain values derived from constants, function calls, or other expressions in the SELECT list

- Aggregates
  - Adds the ability to group results and calculate aggregate values (e.g. count, min, max, avg, sum, …)

- Sub-queries
  - Allows one query to be nested within another
SPARQL 1.1 extensions

- Negation
  - Includes improved language syntax for querying negations

- Property paths
  - Adds the ability to query arbitrarily length path through a graph via a regular-expression-like syntax known as property paths

- Basic federated query
  - Defines a mechanism for splitting a single query among multiple SPARQL endpoints and combining together the results from each
SPARQL exercise
Exercises - RDF

@prefix : <http://example.org/data#> .
@prefix ont: <http://example.org/myOntology#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

:john
  vcard:FN "John Smith" ;
  vcard:N [ vcard:Given "John" ; vcard:Family "Smith" ] ;
  ont:hasAge 32 ;
  ont:marriedTo :mary .

:mary
  vcard:FN "Mary Smith" ;
  vcard:N [ vcard:Given "Mary" ; vcard:Family "Smith" ] ;
  ont:hasAge 29 .
SPARQL query – exercise 1

- Return the full names of all people in the graph

```
PREFIX vCard: <http://www.w3.org/2001/vcardrdf/3.0#>
SELECT ?fullName
WHERE {?x vCard:FN ?fullName}
```

- Result

```
fullName

"John Smith"
"Mary Smith"
```
SPARQL query – exercise 2

- Return the relation between John and Mary

```
PREFIX : <http://example.org/data#>
SELECT ?p
WHERE { :john ?p :mary }
```

- Result

```
?p

<http://example.org/myOntology#marriedTo>
```
SPARQL query – exercise 3

- Return the spouse of a person whose name is John Smith

```sparql
PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX ont: <http://example.org/myOntology#>
SELECT ?y
WHERE {?x vCard:FN "John Smith".
 ?x ont:marriedTo ?y}
```

**Result**

```sparql
y = <http://example.org/data#mary>
```
SPARQL query – exercise 4

- Return the name and the first name of all people in the knowledge base

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?name, ?firstName
WHERE {?x vCard:N ?name . ?name vCard:Given ?firstName}

Result

<table>
<thead>
<tr>
<th>name</th>
<th>firstName</th>
</tr>
</thead>
<tbody>
<tr>
<td>“John Smith”</td>
<td>&quot;John&quot;</td>
</tr>
<tr>
<td>“Mary Smith”</td>
<td>&quot;Mary&quot;</td>
</tr>
</tbody>
</table>
SPARQL query – exercise 5

- Return all people over 30 in the knowledge base

```
PREFIX ont: <http://example.org/myOntology#>
SELECT ?x
WHERE {?x ont:hasAge ?age .
 FILTER(?age > 30)}
```

- Result

```
x

<http://example.org/data#john>
```
FROM

- Select RDF graph (= dataset) to be queried
- In case of multiple FROM clauses, graphs are merged
- Example

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://example.org/foaf/aliceFoaf>
WHERE { ?x foaf:name ?name }
```
SPARQL query – exercise 6

- Graph http://example.org/bob

```sparql
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .
```

- Graph http://example.org/alice

```sparql
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
```
SPARQL query – exercise 6

Return the names of people in both graphs

```sparql
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?src ?name
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
WHERE
{ GRAPH ?src { ?x foaf:name ?name } }
```

Result

<table>
<thead>
<tr>
<th>src</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://example.org/bob">http://example.org/bob</a></td>
<td>&quot;Bob&quot;</td>
</tr>
<tr>
<td><a href="http://example.org/alice">http://example.org/alice</a></td>
<td>&quot;Alice&quot;</td>
</tr>
</tbody>
</table>
References

- W3C, “Introduction to the Semantic Web”

- Lee Feigenbaum, “SPARQL By Example”

- Valentina Tamma, “Chapter 4: SPARQL”
  - [http://www.csc.liv.ac.uk/~valli/Comp318/PDF/SPARQL.pdf](http://www.csc.liv.ac.uk/~valli/Comp318/PDF/SPARQL.pdf)

- Tom Heath, “An Introduction to Linked Data”

- HTML Microdata
  - [http://www.w3.org/TR/microdata](http://www.w3.org/TR/microdata)

- Schema.org
  - [http://schema.org](http://schema.org)
License

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.